Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew M. Leidal is active.

Publication


Featured researches published by Andrew M. Leidal.


Stem Cells | 2011

Aldehyde Dehydrogenase Activity of Breast Cancer Stem Cells Is Primarily Due To Isoform ALDH1A3 and Its Expression Is Predictive of Metastasis

Paola Marcato; Cheryl A. Dean; Da Pan; Rakhna Araslanova; Megan Gillis; Madalsa Joshi; Lucy Helyer; Lu-Zhe Pan; Andrew M. Leidal; Shashi Gujar; Carman A. Giacomantonio; Patrick W.K. Lee

Cancer stem cells (CSCs) are proposed to initiate cancer and propagate metastasis. Breast CSCs identified by aldehyde dehydrogenase (ALDH) activity are highly tumorigenic in xenograft models. However, in patient breast tumor immunohistological studies, where CSCs are identified by expression of ALDH isoform ALDH1A1, CSC prevalence is not correlative with metastasis, raising some doubt as to the role of CSCs in cancer. We characterized the expression of all 19 ALDH isoforms in patient breast tumor CSCs and breast cancer cell lines by total genome microarray expression analysis, immunofluorescence protein expression studies, and quantitative polymerase chain reaction. These studies revealed that ALDH activity of patient breast tumor CSCs and cell lines correlates best with expression of another isoform, ALDH1A3, not ALDH1A1. We performed shRNA knockdown experiments of the various ALDH isoforms and found that only ALDH1A3 knockdown uniformly reduced ALDH activity of breast cancer cells. Immunohistological studies with fixed patient breast tumor samples revealed that ALDH1A3 expression in patient breast tumors correlates significantly with tumor grade, metastasis, and cancer stage. Our results, therefore, identify ALDH1A3 as a novel CSC marker with potential clinical prognostic applicability, and demonstrate a clear correlation between CSC prevalence and the development of metastatic breast cancer. STEM CELLS 2011;29:32–45


The EMBO Journal | 2004

Drosophila Cup is an eIF4E-binding protein that functions in Smaug-mediated translational repression

Meryl R. Nelson; Andrew M. Leidal; Craig A. Smibert

Translational regulation plays an essential role in development and often involves factors that interact with sequences in the 3′ untranslated region (UTR) of specific mRNAs. For example, Nanos protein at the posterior of the Drosophila embryo directs posterior development, and this localization requires selective translation of posteriorly localized nanos mRNA. Spatial regulation of nanos translation requires Smaug protein bound to the nanos 3′ UTR, which represses the translation of unlocalized nanos transcripts. While the function of 3′ UTR‐bound translational regulators is, in general, poorly understood, they presumably interact with the basic translation machinery. Here we demonstrate that Smaug interacts with the Cup protein and that Cup is an eIF4E‐binding protein that blocks the binding of eIF4G to eIF4E. Cup mediates an indirect interaction between Smaug and eIF4E, and Smaug function in vivo requires Cup. Thus, Smaug represses translation via a Cup‐dependent block in eIF4G recruitment.


Cancer Discovery | 2014

Autophagy-Dependent Production of Secreted Factors Facilitates Oncogenic RAS-Driven Invasion

Rebecca Lock; Candia M. Kenific; Andrew M. Leidal; Eduardo Salas; Jayanta Debnath

UNLABELLED The tumor-promoting functions of autophagy are primarily attributed to its ability to promote cancer cell survival. However, emerging evidence suggests that autophagy plays other roles during tumorigenesis. Here, we uncover that autophagy promotes oncogenic RAS-driven invasion. In epithelial cells transformed with oncogenic RAS, depletion of autophagy-related genes suppresses invasion in three-dimensional culture, decreases cell motility, and reduces pulmonary metastases in vivo. Treatment with conditioned media from autophagy-competent cells rescues the invasive capacity of autophagy-deficient cells, indicating that these cells fail to secrete factors required for RAS-driven invasion. Reduced autophagy diminishes the secretion of the promigratory cytokine interleukin-6 (IL-6), which is necessary to restore invasion of autophagy-deficient cells. Moreover, autophagy-deficient cells exhibit reduced levels of matrix metalloproteinase 2 and WNT5A. These results support a previously unrecognized function for autophagy in promoting cancer cell invasion via the coordinate production of multiple secreted factors. SIGNIFICANCE Our results delineate a previously unrecognized function for autophagy in facilitating oncogenic RAS-driven invasion. We demonstrate that an intact autophagy pathway is required for the elaboration of multiple secreted factors favoring invasion, including IL-6.


Cell Host & Microbe | 2012

Subversion of autophagy by Kaposi's sarcoma-associated herpesvirus impairs oncogene-induced senescence.

Andrew M. Leidal; David P. Cyr; Richard Hill; Patrick W.K. Lee; Craig McCormick

Acute oncogenic stress can activate autophagy and facilitate permanent arrest of the cell cycle through a failsafe mechanism known as oncogene-induced senescence (OIS). Kaposis sarcoma-associated herpesvirus (KSHV) proteins are known to subvert autophagic pathways, but the link to Kaposis sarcoma pathogenesis is unclear. We find that oncogenic assault caused by latent KSHV infection elicits DNA damage responses (DDRs) characteristic of OIS, yet infected cells display only modest levels of autophagy and fail to senesce. These aberrant responses result from the combined activities of tandemly expressed KSHV v-cyclin and v-FLIP proteins. v-Cyclin deregulates the cell cycle, triggers DDRs, and if left unchecked can promote autophagy and senescence. However, during latency v-FLIP blocks v-cyclin-induced autophagy and senescence in a manner that requires intact v-FLIP ATG3-binding domains. Together, these data reveal a coordinated viral gene expression program that usurps autophagy, blocks senescence, and facilitates the proliferation of KSHV-infected cells.


Cell Cycle | 2009

p21Cip1/WAF1 mediates cyclin B1 degradation in response to DNA damage

Laura D. Gillis; Andrew M. Leidal; Richard Hill; Patrick W.K. Lee

p21Cip1/WAF1 is the principle mediator of cell cycle arrest in response to DNA damage. p21 primarily mediates G1 cell cycle arrest by inactivating G1-associated cyclin A- and cyclin E-containing cyclin/cdk complexes. In the present study we investigate the role of p21 in DNA damage-induced G2 cell cycle arrest, particularly with respect to the G2-associated cyclin, cyclin B1. We demonstrate that cells lacking p21 or deficient in their ability to upregulate p21 are unable to mediate the downregulation of cyclin B1 in response to DNA damage as compared to wild-type cells. Decreased levels of cyclin B1 in response to DNA damage seen in wild-type cells is due to p21-mediated degradation of cyclin B1 as this can be inhibited by a proteasomal inhibitor. Cell cycle analysis reveals that p21-null cells are unable sustain G2 cell cycle arrest and accumulate at greater than 4N DNA content. These results indicate that p21-mediated degradation of cyclin B1 in response to DNA damage is necessary for the maintenance of G2 cell cycle arrest.


DNA Repair | 2008

Chromium-mediated apoptosis: involvement of DNA-dependent protein kinase (DNA-PK) and differential induction of p53 target genes

Richard Hill; Andrew M. Leidal; Patricia A. Madureira; Laura D. Gillis; David M. Waisman; Arthur Chiu; Patrick W.K. Lee

Cellular stress and DNA damage up-regulate and activate p53, fundamental for cell cycle control, senescence, DNA repair and apoptosis. The specific mechanism(s) that determine whether p53-dependent cell cycle arrest or p53-dependent apoptosis prevails in response to specific DNA damage are poorly understood. In this study, we investigated two types of DNA damage, chromium treatment and gamma irradiation (IR) that induced similar levels of p53, but that mediated two distinct p53-dependent cell fates. Chromium exposure induced a robust DNA-dependent protein kinase (DNA-PK)-mediated apoptotic response that was accompanied by the rapid loss of the cyclin-dependent kinase inhibitor 1A (p21) protein, whereas IR treatment-induced cell cycle arrests that was supported by the rapid induction of p21. Inhibition of DNA-PK effectively blocked chromium-, but not IR-induced p53 stabilization and activation. In contrast, inhibition of ATM and ATR by caffeine had the inverse effect of blocking IR-, but not chromium-induced p53 stabilization and activation. Chromium exposure ablated p21 transcription but PUMA and Bax transcription was significantly enhanced compared to non-damaged cells. In contrast, IR treatment triggered significant p21 mRNA synthesis in addition to PUMA and Bax mRNA production. While chromium treatment enhanced the binding of p53 and RNA polymerase II (RNA Pol II) to both the p21 and PUMA promoters, RNA Pol II elongation was only observed along the PUMA gene and not the p21 gene. In contrast, following IR treatment, RNA Pol II elongation was observed on both p21 and PUMA. Chromium-induced apoptosis therefore involves DNA-PK-mediated p53 activation followed by preferential transcription of pro-apoptotic PUMA over anti-apoptotic p21 genes.


Molecular Cell | 2017

Autophagy-Dependent Shuttling of TBC1D5 Controls Plasma Membrane Translocation of GLUT1 and Glucose Uptake

Srirupa Roy; Andrew M. Leidal; Jordan Ye; Sabrina M. Ronen; Jayanta Debnath

Autophagy traditionally sustains metabolism in stressed cells by promoting intracellular catabolism and nutrient recycling. Here, we demonstrate that in response to stresses requiring increased glycolytic demand, the core autophagy machinery also facilitates glucose uptake and glycolytic flux by promoting cell surface expression of the glucose transporter GLUT1/Slc2a1. During metabolic stress, LC3+ autophagic compartments bind and sequester the RabGAP protein TBC1D5 away from its inhibitory interactions with the retromer complex, thereby enabling retromer recruitment to endosome membranes and GLUT1 plasma membrane translocation. In contrast, TBC1D5 inhibitory interactions with the retromer are maintained in autophagy-deficient cells, leading to GLUT1 mis-sorting into endolysosomal compartments. Furthermore, TBC1D5 depletion in autophagy-deficient cells rescues retromer recruitment to endosomal membranes and GLUT1 surface recycling. Hence, TBC1D5 shuttling to autophagosomes during metabolic stress facilitates retromer-dependent GLUT1 trafficking. Overall, our results illuminate key interconnections between the autophagy and endosomal pathways dictating GLUT1 trafficking and extracellular nutrient uptake.


Current Opinion in Virology | 2012

Evasion of oncogene-induced senescence by gammaherpesviruses

Andrew M. Leidal; Eric S Pringle; Craig McCormick

A common feature of herpesvirus infection is activation of DNA damage responses (DDRs) that are essential for efficient lytic replication. Latent infection with Epstein-Barr virus (EBV) and Kaposis sarcoma-associated herpesvirus (KSHV) also elicit DDRs via the action of latent viral oncoproteins that deregulate cell proliferation and initiate a host anti-proliferative defense known as oncogene-induced senescence (OIS). These viruses encode auxiliary latent proteins that undermine OIS to allow the ongoing proliferation of infected cells despite robust DDR signaling. Persistent DDRs have also been linked to the aberrant secretion of pathogenetically important inflammatory mediators from infected cells. The accumulating evidence indicates that herpesviruses have evolved ways to co-opt DDR signaling to manage both latent and lytic phases of infection, and that DDR subversion may contribute to herpesvirus-associated disease states.


Autophagy | 2012

Viral subversion of autophagy impairs oncogene-induced senescence

Andrew M. Leidal; Patrick W.K. Lee; Craig McCormick

Many viruses have evolved elegant strategies to co-opt cellular autophagic responses to facilitate viral propagation and evasion of immune surveillance. Kaposi’s sarcoma-associated herpesvirus (KSHV) establishes a life-long persistent infection in its human host, and is etiologically linked to several cancers. KSHV gene products have been shown to modulate autophagy but their contribution to pathogenesis remains unclear. Our recent study demonstrated that KSHV subversion of autophagy promotes bypass of oncogene-induced senescence (OIS), an important host barrier to tumor initiation. These findings suggest that KSHV has evolved to subvert autophagy, at least in part, to establish an optimal niche for infection, concurrently dampening host antiviral defenses and allowing the ongoing proliferation of infected cells.


Genes & Development | 2014

‘Doubling down’ on the autophagy pathway to suppress tumor growth

Andrew M. Leidal; Jayanta Debnath

In this issue of Genes & Development, Wei and colleagues (pp. 1204-1216) use elegant genetic approaches to simultaneously delete the essential autophagy gene FIP200 (FAK family-interacting protein of 200 kDa) and the signaling adaptor p62/SQSTM1 within established murine tumors, which reveals an unexpected synergism between the autophagy pathway and p62 in driving tumor growth. Intriguingly, these observations suggest that the combined targeting of autophagy and p62 may serve as an effective approach to treat specific cancers.

Collaboration


Dive into the Andrew M. Leidal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arthur Chiu

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Jordan Ye

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge