Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew M. Parrott is active.

Publication


Featured researches published by Andrew M. Parrott.


Molecular & Cellular Proteomics | 2010

Redox Regulatory Mechanism of Transnitrosylation by Thioredoxin

Changgong Wu; Tong Liu; Wei Chen; Shinichi Oka; Cexiong Fu; Mohit Jain; Andrew M. Parrott; Ahmet Baykal; Junichi Sadoshima; Hong Li

Transnitrosylation and denitrosylation are emerging as key post-translational modification events in regulating both normal physiology and a wide spectrum of human diseases. Thioredoxin 1 (Trx1) is a conserved antioxidant that functions as a classic disulfide reductase. It also catalyzes the transnitrosylation or denitrosylation of caspase 3 (Casp3), underscoring its central role in determining Casp3 nitrosylation specificity. However, the mechanisms that regulate Trx1 transnitrosylation and denitrosylation of specific targets are unresolved. Here we used an optimized mass spectrometric method to demonstrate that Trx1 is itself nitrosylated by S-nitrosoglutathione at Cys73 only after the formation of a Cys32-Cys35 disulfide bond upon which the disulfide reductase and denitrosylase activities of Trx1 are attenuated. Following nitrosylation, Trx1 subsequently transnitrosylates Casp3. Overexpression of Trx1C32S/C35S (a mutant Trx1 with both Cys32 and Cys35 replaced by serine to mimic the disulfide reductase-inactive Trx1) in HeLa cells promoted the nitrosylation of specific target proteins. Using a global proteomics approach, we identified 47 novel Trx1 transnitrosylation target protein candidates. From further bioinformatics analysis of this set of nitrosylated peptides, we identified consensus motifs that are likely to be the determinants of Trx1-mediated transnitrosylation specificity. Among these proteins, we confirmed that Trx1 directly transnitrosylates peroxiredoxin 1 at Cys173 and Cys83 and protects it from H2O2-induced overoxidation. Functionally, we found that Cys73-mediated Trx1 transnitrosylation of target proteins is important for protecting HeLa cells from apoptosis. These data demonstrate that the ability of Trx1 to transnitrosylate target proteins is regulated by a crucial stepwise oxidative and nitrosative modification of specific cysteines, suggesting that Trx1, as a master regulator of redox signaling, can modulate target proteins via alternating modalities of reduction and nitrosylation.


Antioxidants & Redox Signaling | 2011

Thioredoxin 1-Mediated Post-Translational Modifications: Reduction, Transnitrosylation, Denitrosylation, and Related Proteomics Methodologies

Changgong Wu; Andrew M. Parrott; Cexiong Fu; Tong Liu; Stefano M. Marino; Vadim N. Gladyshev; Mohit Jain; Ahmet Baykal; Qing Li; Shinichi Oka; Junichi Sadoshima; Annie Beuve; William J. Simmons; Hong Li

Despite the significance of redox post-translational modifications (PTMs) in regulating diverse signal transduction pathways, the enzymatic systems that catalyze reversible and specific oxidative or reductive modifications have yet to be firmly established. Thioredoxin 1 (Trx1) is a conserved antioxidant protein that is well known for its disulfide reductase activity. Interestingly, Trx1 is also able to transnitrosylate or denitrosylate (defined as processes to transfer or remove a nitric oxide entity to/from substrates) specific proteins. An intricate redox regulatory mechanism has recently been uncovered that accounts for the ability of Trx1 to catalyze these different redox PTMs. In this review, we will summarize the available evidence in support of Trx1 as a specific disulfide reductase, and denitrosylation and transnitrosylation agent, as well as the biological significance of the diverse array of Trx1-regulated pathways and processes under different physiological contexts. The dramatic progress in redox proteomics techniques has enabled the identification of an increasing number of proteins, including peroxiredoxin 1, whose disulfide bond formation and nitrosylation status are regulated by Trx1. This review will also summarize the advancements of redox proteomics techniques for the identification of the protein targets of Trx1-mediated PTMs. Collectively, these studies have shed light on the mechanisms that regulate Trx1-mediated reduction, transnitrosylation, and denitrosylation of specific target proteins, solidifying the role of Trx1 as a master regulator of redox signal transduction.


Journal of Proteomics | 2011

Distinction of thioredoxin transnitrosylation and denitrosylation target proteins by the ICAT quantitative approach

Changgong Wu; Andrew M. Parrott; Tong Liu; Mohit Jain; Yanfei Yang; Junichi Sadoshima; Hong Li

S-Nitrosylation is a reversible PTM for regulating protein function. Thioredoxin-1 (Trx1) catalyzes either transnitrosylation or denitrosylation of specific proteins, depending on the redox status of the cysteines within its conserved oxidoreductase CXXC motif. With a disulfide bond formed between the two catalytic cysteines, Trx1 is not only inactive as a denitrosylase, but it may also be nitrosylated at Cys73 and serve as a transnitrosylating agent. Identification of Trx1-mediated transnitrosylation or denitrosylation targets will contribute to a better understanding of Trx1s function. Previous experimental approaches based on the attenuation of CXXC oxidoreductase activity cannot readily distinguish Trx1 transnitrosylation targets from denitrosylation targets. In this study, we used the ICAT method in conjunction with the biotin switch technique to differentiate Trx1 transnitrosylation targets from denitrosylation target proteins from neuroblastoma cells. We demonstrate that the ICAT approach is effective for quantitative identification of putative Trx1 transnitrosylation and denitrosylation target peptides. From these analyses, we confirmed reports that peroxiredoxin 1 is a Trx1 transnitrosylation, but not a denitrosylation target, and we found several other proteins, including cyclophilin A to be modulated in this manner. Unexpectedly, we found that many nitrosylation sites are reversibly regulated by Trx1, suggesting a more prominent role for Trx1 in regulating S-nitrosylation.


Molecular and Cellular Biology | 2008

Nuclear Factor 45 (NF45) Is a Regulatory Subunit of Complexes with NF90/110 Involved in Mitotic Control

Deyu Guan; Nihal Altan-Bonnet; Andrew M. Parrott; Cindy J. Arrigo; Quan Li; Mohammed Khaleduzzaman; Hong Li; Chee-Gun Lee; Tsafi Pe'ery; Michael B. Mathews

ABSTRACT Nuclear factor 90 (NF90) and its C-terminally extended isoform, NF110, have been isolated as DNA- and RNA-binding proteins together with the less-studied protein NF45. These complexes have been implicated in gene regulation, but little is known about their cellular roles and whether they are redundant or functionally distinct. We show that heterodimeric core complexes, NF90-NF45 and NF110-NF45, exist within larger complexes that are more labile and contain multiple NF90/110 isoforms and additional proteins. Depletion of the NF45 subunit by RNA interference is accompanied by a dramatic decrease in the levels of NF90 and NF110. Reciprocally, depletion of NF90 but not of NF110 greatly reduces the level of NF45. Coregulation of NF90 and NF45 is a posttranscriptional phenomenon, resulting from protein destabilization in the absence of partners. Depletion of NF90-NF45 complexes retards cell growth by inhibition of DNA synthesis. Giant multinucleated cells containing nuclei attached by constrictions accumulate when either NF45 or NF90, but not NF110, is depleted. This study identified NF45 as an unstable regulatory subunit of NF90-NF45 complexes and uncovered their critical role in normal cell division. Furthermore, the study revealed that NF90 is functionally distinct from NF110 and is more important for cell growth.


Nucleic Acids Research | 2007

Novel rapidly evolving hominid RNAs bind nuclear factor 90 and display tissue-restricted distribution

Andrew M. Parrott; Michael B. Mathews

Nuclear factor 90 (NF90) is a double-stranded RNA-binding protein implicated in multiple cellular functions, but with few identified RNA partners. Using in vivo cross-linking followed by immunoprecipitation, we discovered a family of small NF90-associated RNAs (snaR). These highly structured non-coding RNAs of ∼117 nucleotides are expressed in immortalized human cell lines of diverse lineages. In human tissues, they are abundant in testis, with minor distribution in brain, placenta and some other organs. Two snaR subsets were isolated from human 293 cells, and additional species were found by bioinformatic analysis. Their genes often occur in multiple copies arranged in two inverted regions of tandem repeats on chromosome 19. snaR-A is transcribed by RNA polymerase III from an intragenic promoter, turns over rapidly, and shares sequence identity with Alu RNA and two potential piRNAs. It interacts with NF90s double-stranded RNA-binding motifs. snaR orthologs are present in chimpanzee but not other mammals, and include genes located in the promoter of two chorionic gonadotropin hormone genes. snaRs appear to have undergone accelerated evolution and differential expansion in the great apes.


Journal of Molecular Biology | 2003

Selective regulation of gene expression by nuclear factor 110, a member of the NF90 family of double-stranded RNA-binding proteins.

Trevor W. Reichman; Andrew M. Parrott; Ivo Fierro-Monti; David J. Caron; Peter N. Kao; Chee-Gun Lee; Hong Li; Michael B. Mathews

Members of the nuclear factor 90 (NF90) family of double-stranded RNA (dsRNA)-binding proteins have been implicated in several biological processes including the regulation of gene expression. cDNA sequences predict that the proteins have a functional nuclear localization signal and two dsRNA-binding motifs (dsRBMs), and are identical at their N termini. Isoforms are predicted to diverge at their C termini as well as by the insertion of four amino acid residues (NVKQ) between the two dsRBMs. In this study, we verified the expression of four of the isoforms by cDNA cloning and mass spectrometric analysis of proteins isolated from human cells. Cell fractionation studies showed that NF90 and its heteromeric partner, NF45, are predominantly nuclear and largely chromatin-associated. The C-terminally extended NF90 species, NF110, are almost exclusively chromatin-bound. Both NF110 isoforms are more active than NF90 isoforms in stimulating transcription from the proliferating cell nuclear antigen reporter in a transient expression system. NF110b, which carries the NVKQ insert, was identified as the strongest activator. It stimulated transcription of some, but not all, promoters in a fashion that suggested that it functions in concert with other transcription factors. Finally, we demonstrate that NF110b associates with the dsRBM-containing transcriptional co-activator, RNA helicase A, independently of RNA binding.


Nucleic Acids Research | 2011

The evolution and expression of the snaR family of small non-coding RNAs

Andrew M. Parrott; Michael Tsai; Priyanka Batchu; Karen Ryan; Harvey L. Ozer; Bin Tian; Michael B. Mathews

We recently identified the snaR family of small non-coding RNAs that associate in vivo with the nuclear factor 90 (NF90/ILF3) protein. The major human species, snaR-A, is an RNA polymerase III transcript with restricted tissue distribution and orthologs in chimpanzee but not rhesus macaque or mouse. We report their expression in human tissues and their evolution in primates. snaR genes are exclusively in African Great Apes and some are unique to humans. Two novel families of snaR-related genetic elements were found in primates: CAS (catarrhine ancestor of snaR), limited to Old World Monkeys and apes; and ASR (Alu/snaR-related), present in all monkeys and apes. ASR and CAS appear to have spread by retrotransposition, whereas most snaR genes have spread by segmental duplication. snaR-A and snaR-G2 are differentially expressed in discrete regions of the human brain and other tissues, notably including testis. snaR-A is up-regulated in transformed and immortalized human cells, and is stably bound to ribosomes in HeLa cells. We infer that snaR evolved from the left monomer of the primate-specific Alu SINE family via ASR and CAS in conjunction with major primate speciation events, and suggest that snaRs participate in tissue- and species-specific regulation of cell growth and translation.


Methods | 2013

Functional proteomics approaches for the identification of transnitrosylase and denitrosylase targets.

Changgong Wu; Andrew M. Parrott; Tong Liu; Annie Beuve; Hong Li

Protein S-nitrosylation is a dynamic post-translational modification (PTM) of specific cysteines within a target protein. Both proteins and small molecules are known to regulate the attachment and removal of this PTM, and proteins exhibiting such a function are transnitrosylase or denitrosylase candidates. With the advent of the biotin switch technique coupled to high-throughput proteomics workflows, the identification and quantification of large numbers of S-nitrosylated proteins and peptides is now possible. Proper analysis and interpretation of high throughout and quantitative proteomics data will help identify specific transnitrosylase and denitrosylase target peptide sequences and contribute to an understanding of the function and regulation of specific S-nitrosylation events. Here we describe the application of a quantitative proteomics approach using isotope-coded affinity tags (ICAT) in the biotin switch approach for the identification of transnitrosylation and denitrosylation targets of thioredoxin 1, an enigmatic protein with both reported transnitrosylase and denitrosylase activities.


Nucleic Acids Research | 2010

Differential regulation of full-length genome and a single-stranded 7S DNA along the cell cycle in human mitochondria

Anita Antes; Inger Tappin; Stella Chung; Robert Lim; Bin Lu; Andrew M. Parrott; Helene Z. Hill; Carolyn K. Suzuki; Chee-Gun Lee

Mammalian mitochondria contain full-length genome and a single-stranded 7S DNA. Although the copy number of mitochondrial DNA (mtDNA) varies depending on the cell type and also in response to diverse environmental stresses, our understanding of how mtDNA and 7S DNA are maintained and regulated is limited, partly due to lack of reliable in vitro assay systems that reflect the in vivo functionality of mitochondria. Here we report an in vitro assay system to measure synthesis of both mtDNA and 7S DNA under a controllable in vitro condition. With this assay system, we demonstrate that the replication capacity of mitochondria correlates with endogenous copy numbers of mtDNA and 7S DNA. Our study also shows that higher nucleotide concentrations increasingly promote 7S DNA synthesis but not mtDNA synthesis. Consistently, the mitochondrial capacity to synthesize 7S DNA but not mtDNA noticeably varied along the cell cycle, reaching its highest level in S phase. These findings suggest that syntheses of mtDNA and 7S DNA proceed independently and that the mitochondrial capacity to synthesize 7S DNA dynamically changes not only with cell-cycle progression but also in response to varying nucleotide concentrations.


Methods in Enzymology | 2007

Analysis of RNA:Protein Interactions In Vivo: Identification of RNA‐Binding Partners of Nuclear Factor 90

Andrew M. Parrott; Melissa R. Walsh; Michael B. Mathews

Ribonucleoprotein complexes (RNPs) perform a multitude of functions in the cell. Elucidating the composition of such complexes and unraveling their many interactions are current challenges in molecular biology. To stabilize complexes formed in cells and to preclude reassortment of their components during isolation, we employ chemical crosslinking of the RNA and protein moieties. Here we describe the identification of cellular RNAs bound to nuclear factor 90 (NF90), the founder member of a family of ubiquitous double-stranded RNA-binding proteins. Crosslinked RNA-NF90 complexes were immunoprecipitated from stable cell lines containing epitope-tagged NF90 protein isoforms. The bound RNA was released and identified through RNase H digestion and by various gene amplification techniques. We appraise the methods used by altering crosslinking conditions, and the binding profiles of different NF90 protein isoforms in synchronized and asynchronous cells are compared. This study discovers two novel RNA species and establishes NF90 as a multiclass RNA-binding protein, capable of binding representatives of all three classes of RNA.

Collaboration


Dive into the Andrew M. Parrott's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chee-Gun Lee

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mohit Jain

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge