Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew M. Roberts is active.

Publication


Featured researches published by Andrew M. Roberts.


The Annals of Thoracic Surgery | 2003

Blunt traumatic aortic transection: the endovascular experience.

Victoria P.C. Orford; Noel Atkinson; Ken R. Thomson; P. Y. Milne; William A Campbell; Andrew M. Roberts; John Goldblatt; James Tatoulis

BACKGROUND Thoracic aortic transection resulting from blunt trauma is usually fatal. It is almost always associated with multiple, complex, nonaortic injuries that could be adversely affected by standard surgical repair of the aorta. Endovascular stenting techniques offer these patients a less physiologically disruptive treatment option. We studied the feasibility and safety of endovascular stent graft placement for treatment of acute traumatic aortic transection. METHODS Between 1994 and 2001, 9 patients were treated emergently for aortic transections with stent graft placement. The first patient had a custom-made prototype, and the other 8 patients had the Cook-Zenith thoracic stent graft implanted. All were polyester-covered Z-stent construction and deployed through a femoral 20- to 24-F delivery sheath. RESULTS Stent graft placement successfully sealed the aorta in all patients. One patient died as a result of a cerebrovascular accident. One patient required a brachial thrombectomy to relieve arm ischemia. The remaining eight patients were alive and without complications during the follow-up period (mean 21 months). CONCLUSIONS Endovascular repair for acute aortic transection is a safe, effective, and timely treatment option. It may be the treatment of choice in patients with extensive associated injuries.


Acta Physiologica | 2010

Mechanisms of fibrinogen‐induced microvascular dysfunction during cardiovascular disease

David Lominadze; William L. Dean; Suresh C. Tyagi; Andrew M. Roberts

Fibrinogen (Fg) is a high molecular weight plasma adhesion protein and a biomarker of inflammation. Many cardiovascular and cerebrovascular disorders are accompanied by increased blood content of Fg. Increased levels of Fg result in changes in blood rheological properties such as increases in plasma viscosity, erythrocyte aggregation, platelet thrombogenesis, alterations in vascular reactivity and compromises in endothelial layer integrity. These alterations exacerbate the complications in peripheral blood circulation during cardiovascular diseases such as hypertension, diabetes and stroke. In addition to affecting blood viscosity by altering plasma viscosity and erythrocyte aggregation, growing experimental evidence suggests that Fg alters vascular reactivity and impairs endothelial cell layer integrity by binding to its endothelial cell membrane receptors and activating signalling mechanisms. The purpose of this review is to discuss experimental data, which demonstrate the effects of Fg causing vascular dysfunction and to offer possible mechanisms for these effects, which could exacerbate microcirculatory complications during cardiovascular diseases accompanied by increased Fg content.


Archives of Physiology and Biochemistry | 2007

Lung ischemia-reperfusion injury: implications of oxidative stress and platelet-arteriolar wall interactions.

Alexander V. Ovechkin; David Lominadze; Kara C. Sedoris; Tonya W. Robinson; Suresh C. Tyagi; Andrew M. Roberts

Abstract Pulmonary ischemia–reperfusion (IR) injury may result from trauma, atherosclerosis, pulmonary embolism, pulmonary thrombosis and surgical procedures such as cardiopulmonary bypass and lung transplantation. IR injury induces oxidative stress characterized by formation of reactive oxygen (ROS) and reactive nitrogen species (RNS). Nitric oxide (NO) overproduction via inducible nitric oxide synthase (iNOS) is an important component in the pathogenesis of IR. Reaction of NO with ROS forms RNS as secondary reactive products, which cause platelet activation and upregulation of adhesion molecules. This mechanism of injury is particularly important during pulmonary IR with increased iNOS activity in the presence of oxidative stress. Platelet–endothelial interactions may play an important role in causing pulmonary arteriolar vasoconstriction and post-ischemic alveolar hypoperfusion. This review discusses the relationship between ROS, RNS, P-selectin, and platelet–arteriolar wall interactions and proposes a hypothesis for their role in microvascular responses during pulmonary IR.


Journal of Cellular Biochemistry | 2005

Mitochondrial mechanism of oxidative stress and systemic hypertension in hyperhomocysteinemia

Neetu Tyagi; Karni S. Moshal; Alexander V. Ovechkin; Walter E. Rodriguez; Mesia Steed; Brooke Henderson; Andrew M. Roberts; Irving G. Joshua; Suresh C. Tyagi

Formation of homocysteine (Hcy) is the constitutive process of gene methylation. Hcy is primarily synthesized by de‐methylation of methionine, in which s‐adenosyl‐methionine (SAM) is converted to s‐adenosyl‐homocysteine (SAH) by methyltransferase (MT). SAH is then hydrolyzed to Hcy and adenosine by SAH‐hydrolase (SAHH). The accumulation of Hcy leads to increased cellular oxidative stress in which mitochondrial thioredoxin, and peroxiredoxin are decreased and NADH oxidase activity is increased. In this process, Ca2+‐dependent mitochondrial nitric oxide synthase (mtNOS) and calpain are induced which lead to cytoskeletal de‐arrangement and cellular remodeling. This process generates peroxinitrite and nitrotyrosine in contractile proteins which causes vascular dysfunction. Chronic exposure to Hcy instigates endothelial and vascular dysfunction and increases vascular resistance causing systemic hypertension. To compensate, the heart increases its load which creates adverse cardiac remodeling in which the elastin/collagen ratio is reduced, causing cardiac stiffness and diastolic heart failure in hyperhomocysteinemia. J. Cell. Biochem.


Molecular and Cellular Biochemistry | 2007

Fibrinogen induces endothelial cell permeability

Neetu Tyagi; Andrew M. Roberts; William L. Dean; Suresh C. Tyagi; David Lominadze

Many cardiovascular and cerebrovascular disorders are accompanied by an increased blood content of fibrinogen (Fg), a high molecular weight plasma adhesion protein. Fg is a biomarker of inflammation and its degradation products have been associated with microvascular leakage. We tested the hypothesis that at pathologically high levels, Fg increases endothelial cell (EC) permeability through extracellular signal regulated kinase (ERK) signaling and by inducing F-actin formation. In cultured ECs, Fg binding to intercellular adhesion molecule-1 and to α5β1 integrin, caused phosphorylation of ERK. Subsequently, F-actin formation increased and coincided with formation of gaps between ECs, which corresponded with increased permeability of ECs to albumin. Our data suggest that formation of F-actin and gaps may be the mechanism for increased albumin leakage through the EC monolayer. The present study indicates that elevated un-degraded Fg may be a factor causing microvascular permeability that typically accompanies cardiovascular and cerebrovascular disorders.


Free Radical Biology and Medicine | 2010

Mitochondrial dysfunction may explain the cardiomyopathy of chronic iron overload

Xueshan Gao; Mingwei Qian; Jian Campian; James P Marshall; Zhanxiang Zhou; Andrew M. Roberts; Y. James Kang; Sumanth D. Prabhu; Xiao-Feng Sun; John W. Eaton

In patients with hemochromatosis, cardiac dysfunction may appear years after they have reached a state of iron overload. We hypothesized that cumulative iron-catalyzed oxidant damage to mitochondrial DNA (mtDNA) might explain the cardiomyopathy of chronic iron overload. Mice were given repetitive injections of iron dextran for a total of 4weeks after which the iron-loaded mice had elevated cardiac iron, modest cardiac hypertrophy, and cardiac dysfunction. qPCR amplification of near-full-length ( approximately 16kb) mtDNA revealed >50% loss of full-length product, whereas amounts of a qPCR product of a nuclear gene (13kb region of beta globin) were unaffected. Quantitative rtPCR analyses revealed 60-70% loss of mRNA for proteins encoded by mtDNA with no change in mRNA abundance for nuclear-encoded respiratory subunits. These changes coincided with proportionate reductions in complex I and IV activities and decreased respiration of isolated cardiac mitochondria. We conclude that chronic iron overload leads to cumulative iron-mediated damage to mtDNA and impaired synthesis of mitochondrial respiratory chain subunits. The resulting respiratory dysfunction may explain the slow development of cardiomyopathy in chronic iron overload and similar accumulation of damage to mtDNA may also explain the mitochondrial dysfunction observed in slowly progressing diseases such as neurodegenerative disorders.


Journal of Cellular Physiology | 2009

Fibrinogen Induces Alterations of Endothelial Cell Tight Junction Proteins

Phani K. Patibandla; Neetu Tyagi; William L. Dean; Suresh C. Tyagi; Andrew M. Roberts; David Lominadze

We previously showed that an elevated content of fibrinogen (Fg) increased formation of filamentous actin and enhanced endothelial layer permeability. In the present work we tested the hypothesis that Fg binding to endothelial cells (ECs) alters expression of actin‐associated endothelial tight junction proteins (TJP). Rat cardiac microvascular ECs were grown in gold plated chambers of an electrical cell‐substrate impedance system, 8‐well chambered, or in 12‐well plates. Confluent ECs were treated with Fg (2 or 4 mg/ml), Fg (4 mg/ml) with mitogen‐activated protein kinase (MEK) kinase inhibitors (PD98059 or U0126), Fg (4 mg/ml) with anti‐ICAM‐1 antibody or BQ788 (endothelin type B receptor blocker), endothelin‐1, endothelin‐1 with BQ788, or medium alone for 24 h. Fg induced a dose‐dependent decrease in EC junction integrity as determined by transendothelial electrical resistance (TEER). Western blot analysis and RT‐PCR data showed that the higher dose of Fg decreased the contents of TJPs, occludin, zona occluden‐1 (ZO‐1), and zona occluden‐2 (ZO‐2) in ECs. Fg‐induced decreases in contents of the TJPs were blocked by PD98059, U0126, or anti‐ICAM‐1 antibody. While BQ788 inhibited endothelin‐1‐induced decrease in TEER, it did not affect Fg‐induced decrease in TEER. These data suggest that Fg increases EC layer permeability via the MEK kinase signaling pathway by affecting occludin, ZO‐1, and ZO‐2, TJPs, which are bound to actin filaments. Therefore, increased binding of Fg to its major EC receptor, ICAM‐1, during cardiovascular diseases may increase microvascular permeability by altering the content and possibly subcellular localization of endothelial TJPs. J. Cell. Physiol. 221: 195–203, 2009.


PLOS ONE | 2013

Humans Have Antibodies against a Plant Virus: Evidence from Tobacco Mosaic Virus

Ruolan Liu; Radhika Vaishnav; Andrew M. Roberts; Robert P. Friedland

Tobacco mosaic virus (TMV), a widespread plant pathogen, is found in tobacco (including cigarettes and smokeless tobacco) as well as in many other plants. Plant viruses do not replicate or cause infection in humans or other mammals. This study was done to determine whether exposure to tobacco products induces an immune response to TMV in humans. Using a sandwich ELISA assay, we detected serum anti-TMV antibodies (IgG, IgG1, IgG3, IgG4, IgA, and IgM) in all subjects enrolled in the study (20 healthy smokers, 20 smokeless-tobacco users, and 20 non-smokers). Smokers had a higher level of serum anti-TMV IgG antibodies than non-smokers, while the serum level of anti-TMV IgA from smokeless tobacco users was lower than smokers and non-smokers. Using bioinformatics, we also found that the human protein TOMM40L (an outer mitochondrial membrane 40 homolog – like translocase) contains a strong homology of six contiguous amino acids to the TMV coat protein, and TOMM40L peptide exhibited cross-reactivity with anti-TMV antibodies. People who smoke cigarettes or other tobacco products experience a lower risk of developing Parkinson’s disease, but the mechanism by which this occurs is unclear. Our results showing molecular mimicry between TMV and human TOMM40L raise the question as to whether TMV has a potential role in smokers against Parkinson’s disease development. The potential mechanisms of molecular mimicry between plant viruses and human disease should be further explored.


Journal of Cardiovascular Pharmacology and Therapeutics | 2005

Hyperhomocysteinemic Diabetic Cardiomyopathy: Oxidative Stress, Remodeling, and Endothelial-Myocyte Uncoupling

Suresh C. Tyagi; Walter E. Rodriguez; Anuj M. Patel; Andrew M. Roberts; Jeff C. Falcone; John C. Passmore; John T. Fleming; Irving G. Joshua

Accumulation of oxidized-matrix (fibrosis) between the endothelium (the endothelial cells embedded among the myocytes) and cardiomyocytes is a hallmark of diabetes mellitus and causes diastolic impairment. In diabetes mellitus, elevated levels of homocysteine activate matrix metalloproteinase and disconnect the endothelium from myocytes. Extracellular matrix functionally links the endothelium to the cardiomyocyte and is important for their synchronization. However, in diabetes mellitus, a disconnection is caused by activated metalloproteinase, with subsequent accumulation of oxidized matrix between the endothelium and myocyte. This contributes to endothelial-myocyte uncoupling and leads to impaired diastolic relaxation of the heart in diabetes mellitus. Elevated levels of homocysteine in diabetes are attributed to impaired homocysteine metabolism by glucose and insulin and decreased renal clearance. Homocysteine induces oxidative stress and is inversely related to the expression of peroxisome proliferators activated receptor (PPAR). Several lines of evidence suggest that ablation of the matrix metalloproteinase (MMP-9) gene ameliorates the endothelial-myocyte uncoupling in diabetes mellitus. Homocysteine competes for, and decreases the PPARγ activity. In diabetes mellitus, endothelial-myocyte uncoupling is associated with matrix metalloproteinase activation and decreased PPARγ activity. The purpose of this review is to discuss the role of endothelial-myocyte uncoupling in diabetes mellitus and increased levels of homocysteine, causing activation of latent metalloproteinases, decreased levels of thioredoxin and peroxiredoxin, and cardiac tissue inhibitor of metalloproteinase (CIMP) in response to antagonizing PPARγ.


American Journal of Physiology-cell Physiology | 2009

Fibrinogen-induced endothelin-1 production from endothelial cells

Utpal Sen; Neetu Tyagi; Phani K. Patibandla; William L. Dean; Suresh C. Tyagi; Andrew M. Roberts; David Lominadze

We previously demonstrated that fibrinogen (Fg) binding to the vascular endothelial intercellular adhesion molecule-1 (ICAM-1) leads to microvascular constriction in vivo and in vitro. Although a role of endothelin-1 (ET-1) in this Fg-induced vasoconstriction was suggested, the mechanism of action was not clear. In the current study, we tested the hypothesis that Fg-induced vasoconstriction results from ET-1 production by vascular endothelial cells (EC) and is mediated by activation of extracellular signal-regulated kinase -1/2 (ERK-1/2). Confluent, rat heart microvascular endothelial cells (RHMECs) were treated with one of the following: Fg (2 or 4 mg/ml), Fg (4 mg/ml) with ERK-1/2 kinase inhibitors (PD-98059 or U-0126), Fg (4 mg/ml) with an antibody against ICAM-1, or medium alone for 45 min. The amount of ET-1 formed and the concentration of released von Willebrand factor (vWF) in the cell culture medium were measured by ELISAs. Fg-induced exocytosis of Weibel-Palade bodies (WPBs) was assessed by immunocytochemistry. Phosphorylation of ERK-1/2 was detected by Western blot analysis. Fg caused a dose-dependent increase in ET-1 formation and release of vWF from the RHMECs. This Fg-induced increase in ET-1 production was inhibited by specific ERK-1/2 kinase inhibitors and by anti-ICAM-1 antibody. Immunocytochemical staining showed that an increase in Fg concentration enhanced exocytosis of WPBs in ECs. A specific endothelin type B receptor blocker, BQ-788, attenuated the enhanced phosphorylation of ERK-1/2 in ECs caused by increased Fg content in the culture medium. The presence of an endothelin converting enzyme inhibitor, SM-19712, slightly decreased Fg-induced phosphorylation of ERK-1/2, but inhibited production of Fg-induced ET-1 production. These results suggest that Fg-induced vasoconstriction may be mediated, in part, by activation of ERK-1/2 signaling and increased production of ET-1 that further increases EC ERK-1/2 signaling. Thus, an increased content of Fg may enhance vasoconstriction through increased production of ET-1.

Collaboration


Dive into the Andrew M. Roberts's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Evelyne Gozal

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neetu Tyagi

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge