Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew May is active.

Publication


Featured researches published by Andrew May.


Archive | 1996

Work, power and energy

Betty Haines; Roger Haines; Andrew May

When an elastic string, natural length a, modulus of elasticity λ, is stretched by a distance x, the tension in the string is \( T = \lambda \frac{x}{a} \).


Archive | 1996

Confidence intervals/samples/hypothesis testing

Betty Haines; Roger Haines; Andrew May

Take many samples, size n, from a population and find their means. The Central Limit Theorem proves that these means form a Normal distribution with mean μ (that of the population) and standard deviation \( \frac{\sigma }{{\sqrt n }} \) (called the standard error):


Archive | 1996

Miscellaneous mechanics topics

Betty Haines; Roger Haines; Andrew May


Archive | 1996

Variable acceleration and SHM

Betty Haines; Roger Haines; Andrew May

\bar X \sim N\left( {\mu ,\frac{{{\sigma ^2}}}{n}} \right)


Archive | 1996

Sequences and series

Betty Haines; Roger Haines; Andrew May


Archive | 1996

Miscellaneous statistics topics

Betty Haines; Roger Haines; Andrew May

For small samples (n < 30) see Chapter 19.


Archive | 1996

Motion in a circle

Betty Haines; Roger Haines; Andrew May

If r A and r B are the position vectors of A and B then ṙ A = v A and ṙ B = v B are the velocities of A and B.


Archive | 1996

Basic algebra and arithmetic

Betty Haines; Roger Haines; Andrew May

For straight-line motion


Archive | 1996

Mathematics A Level

Betty Haines; Roger Haines; Andrew May


Archive | 1996

Miscellaneous pure topics

Betty Haines; Roger Haines; Andrew May

F = m\ddot x{\kern 1pt} so{\kern 1pt} \ddot x{\kern 1pt} = \frac{F}{m}

Collaboration


Dive into the Andrew May's collaboration.

Researchain Logo
Decentralizing Knowledge