Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew Mehle is active.

Publication


Featured researches published by Andrew Mehle.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Adaptive strategies of the influenza virus polymerase for replication in humans

Andrew Mehle; Jennifer A. Doudna

Transmission of influenza viruses into the human population requires surmounting barriers to cross-species infection. Changes in the influenza polymerase overcome one such barrier. Viruses isolated from birds generally contain polymerases with the avian-signature glutamic acid at amino acid 627 in the PB2 subunit. These polymerases display restricted activity in human cells. An adaptive change in this residue from glutamic acid to the human-signature lysine confers high levels of polymerase activity in human cells. This mutation permits escape from a species-specific restriction factor that targets polymerases from avian viruses. A 2009 swine-origin H1N1 influenza A virus recently established a pandemic infection in humans, even though the virus encodes a PB2 with the restrictive glutamic acid at amino acid 627. We show here that the 2009 H1N1 virus has acquired second-site suppressor mutations in its PB2 polymerase subunit that convey enhanced polymerase activity in human cells. Introduction of this polymorphism into the PB2 subunit of a primary avian isolate also increased polymerase activity and viral replication in human and porcine cells. An alternate adaptive strategy has also been identified, whereby introduction of a human PA subunit into an avian polymerase overcomes restriction in human cells. These data reveal a strategy used by the 2009 H1N1 influenza A virus and identify other pathways by which avian and swine-origin viruses may evolve to enhance replication, and potentially pathogenesis, in humans.


Journal of Biological Chemistry | 2006

A Zinc-binding Region in Vif Binds Cul5 and Determines Cullin Selection

Andrew Mehle; Elaine R. Thomas; Kottampatty S. Rajendran; Dana Gabuzda

Human immunodeficiency virus-1 (HIV-1) Vif overcomes the anti-viral activity of APOBEC3G by targeting it for ubiquitination via a Cullin 5-ElonginB-ElonginC (Cul5-EloBC) E3 ligase. Vif associates with Cul5-EloBC through a BC-box motif that binds EloC, but the mechanism by which Vif selectively recruits Cul5 is poorly understood. Here we report that a region of Vif (residues 100-142) upstream of the BC-box binds selectively to Cul5 in the absence of EloC. This region contains a zinc coordination site HX5CX17-18CX3-5H (HCCH), with His/Cys residues at positions 108, 114, 133, and 139 coordinating one zinc ion. The HCCH zinc coordination site, which is conserved among primate lentivirus Vif proteins, does not correspond to any known class of zinc-binding motif. Mutations of His/Cys residues in the HCCH motif impair zinc coordination, Cul5 binding, and APOBEC3G degradation. Mutations of conserved hydrophobic residues (Ile-120, Ala-123, and Leu-124) located between the two Cys residues in the HCCH motif disrupt binding of the zinc-coordinating region to Cul5 and inhibit APOBEC3G degradation. The Vif binding site maps to the first cullin repeat in the N terminus of Cul5. These data suggest that the zinc-binding region in Vif is a novel cullin interaction domain that mediates selective binding to Cul5. We propose that the HCCH zinc-binding motif facilitates Vif-Cul5 binding by playing a structural role in positioning hydrophobic residues for direct contact with Cul5.


Cell Host & Microbe | 2008

An Inhibitory Activity in Human Cells Restricts the Function of an Avian-like Influenza Virus Polymerase

Andrew Mehle; Jennifer A. Doudna

Transmission of avian influenza virus into human populations has the potential to cause pandemic outbreaks. A major determinant of species tropism is the identity of amino acid 627 in the PB2 subunit of the heterotrimeric influenza polymerase; glutamic acid predominates in avian PB2, whereas lysine occupies this position in human isolates. We show that a dominant inhibitory activity in human cells potently and selectively restricts the function of polymerases containing an avian-like PB2 with glutamic acid at residue 627. Restricted polymerases fail to assemble into ribonucleoprotein complexes, resulting in decreased genome transcription, replication, and virus production without any significant effect on relative viral infectivity. Understanding the molecular basis of this species-specific restriction should provide strategies to prevent and treat avian influenza outbreaks in humans.


Journal of Virology | 2007

Identification of an APOBEC3G binding site in human immunodeficiency virus type 1 Vif and inhibitors of Vif-APOBEC3G binding.

Andrew Mehle; Heather Wilson; Chengsheng Zhang; Andrew Jay Brazier; Mark McPike; Erez Pery; Dana Gabuzda

ABSTRACT The APOBEC3 cytidine deaminases are potent antiviral factors that restrict replication of human immunodeficiency virus type 1 (HIV-1). HIV-1 Vif binds APOBEC3G and APOBEC3F and targets these proteins for ubiquitination by forming an E3 ubiquitin ligase with cullin 5 and elongins B and C. The N-terminal region of Vif is required for APOBEC3G binding, but the binding site(s) is unknown. To identify the APOBEC3G binding site in Vif, we established a scalable binding assay in a format compatible with development of high-throughput screens. In vitro binding assays using recombinant proteins identified Vif peptides and monoclonal antibodies that inhibit Vif-APOBEC3G binding and suggested involvement of Vif residues 33 to 83 in APOBEC3G binding. Cell-based binding assays confirmed these results and demonstrated that residues 40 to 71 in the N terminus of Vif contain a nonlinear binding site for APOBEC3G. Mutation of the highly conserved residues His42/43 but not other charged residues in this region inhibited Vif-APOBEC3G binding, Vif-mediated degradation of APOBEC3G, and viral infectivity. In contrast, mutation of these residues had no significant effect on Vif binding and degradation of APOBEC3F, suggesting a differential requirement for His42/43 in Vif binding to APOBEC3G and APOBEC3F. These results identify a nonlinear APOBEC3 binding site in the N terminus of Vif and demonstrate that peptides or antibodies directed against this region can inhibit Vif-APOBEC3G binding, validating the Vif-APOBEC3 interface as a potential drug target.


Journal of Virology | 2012

Reassortment and Mutation of the Avian Influenza Virus Polymerase PA Subunit Overcome Species Barriers

Andrew Mehle; Vivien G. Dugan; Jeffery K. Taubenberger; Jennifer A. Doudna

ABSTRACT The emergence of new pandemic influenza A viruses requires overcoming barriers to cross-species transmission as viruses move from animal reservoirs into humans. This complicated process is driven by both individual gene mutations and genome reassortments. The viral polymerase complex, composed of the proteins PB1, PB2, and PA, is a major factor controlling host adaptation, and reassortment events involving polymerase gene segments occurred with past pandemic viruses. Here we investigate the ability of polymerase reassortment to restore the activity of an avian influenza virus polymerase that is normally impaired in human cells. Our data show that the substitution of human-origin PA subunits into an avian influenza virus polymerase alleviates restriction in human cells and increases polymerase activity in vitro. Reassortants with 2009 pandemic H1N1 PA proteins were the most active. Mutational analyses demonstrated that the majority of the enhancing activity in human PA results from a threonine-to-serine change at residue 552. Reassortant viruses with avian polymerases and human PA subunits, or simply the T552S mutation, displayed faster replication kinetics in culture and increased pathogenicity in mice compared to those containing a wholly avian polymerase complex. Thus, the acquisition of a human PA subunit, or the signature T552S mutation, is a potential mechanism to overcome the species-specific restriction of avian polymerases and increase virus replication. Our data suggest that the human, avian, swine, and 2009 H1N1-like viruses that are currently cocirculating in pig populations set the stage for PA reassortments with the potential to generate novel viruses that could possess expanded tropism and enhanced pathogenicity.


Journal of Virology | 2013

Highly sensitive real-time in vivo imaging of an influenza reporter virus reveals dynamics of replication and spread.

Vy Tran; Lindsey A. Moser; Daniel S. Poole; Andrew Mehle

ABSTRACT The continual public health threat posed by the emergence of novel influenza viruses necessitates the ability to rapidly monitor infection and spread in experimental systems. To analyze real-time infection dynamics, we have created a replication-competent influenza reporter virus suitable for in vivo imaging. The reporter virus encodes the small and bright NanoLuc luciferase whose activity serves as an extremely sensitive readout of viral infection. This virus stably maintains the reporter construct and replicates in culture and in mice with near-native properties. Bioluminescent imaging of the reporter virus permits serial observations of viral load and dissemination in infected animals, even following clearance of a sublethal challenge. We further show that the reporter virus recapitulates known restrictions due to host range and antiviral treatment, suggesting that this technology can be applied to studying emerging influenza viruses and the impact of antiviral interventions on infections in vivo. These results describe a generalizable method to quickly determine the replication and pathogenicity potential of diverse influenza strains in animals.


Nature Communications | 2015

Visualizing real-time influenza virus infection, transmission and protection in ferrets

Erik A. Karlsson; Victoria A. Meliopoulos; Chandra Savage; Brandi Livingston; Andrew Mehle; Stacey Schultz-Cherry

Influenza transmission efficiency in ferrets is vital for risk-assessment studies. However, the inability to monitor viral infection and transmission dynamics in real time only provides a glimpse into transmissibility. Here we exploit a replication-competent influenza reporter virus to investigate dynamics of infection/transmission in ferrets. Bioluminescent imaging of ferrets infected with A/California/04/2009 H1N1 virus (CA/09) encoding NanoLuc (NLuc) luciferase provides the first real-time snapshot of influenza infection/transmission. Luminescence in the respiratory tract and in less well-characterized extra-pulmonary sites is observed, and imaging identifies infections in animals that would have otherwise been missed by traditional methods. Finally, the reporter virus significantly increases the speed and sensitivity of virological and serological assays. Thus, bioluminescent imaging of influenza infections rapidly determines intra-host dissemination, inter-host transmission and viral load, revealing infection dynamics and pandemic potential of the virus. These results have important implications for antiviral drug susceptibility, vaccine efficacy, transmissibility and pathogenicity studies.


PLOS Pathogens | 2015

Phosphorylation at the homotypic interface regulates nucleoprotein oligomerization and assembly of the influenza virus replication machinery.

Arindam Mondal; Gregory K. Potts; Anthony R. Dawson; Joshua J. Coon; Andrew Mehle

Negative-sense RNA viruses assemble large ribonucleoprotein (RNP) complexes that direct replication and transcription of the viral genome. Influenza virus RNPs contain the polymerase, genomic RNA and multiple copies of nucleoprotein (NP). During RNP assembly, monomeric NP oligomerizes along the length of the genomic RNA. Regulated assembly of the RNP is essential for virus replication, but how NP is maintained as a monomer that subsequently oligomerizes to form RNPs is poorly understood. Here we elucidate a mechanism whereby NP phosphorylation regulates oligomerization. We identified new evolutionarily conserved phosphorylation sites on NP and demonstrated that phosphorylation of NP decreased formation of higher-order complexes. Two phosphorylation sites were located on opposite sides of the NP:NP interface. In both influenza A and B virus, mutating or mimicking phosphorylation at these residues blocked homotypic interactions and drove NP towards a monomeric form. Highlighting the central role of this process during infection, these mutations impaired RNP formation, polymerase activity and virus replication. Thus, dynamic phosphorylation of NP regulates RNP assembly and modulates progression through the viral life cycle.


Viruses | 2010

A Host of Factors Regulating Influenza Virus Replication

Andrew Mehle; Jennifer A. Doudna

A new series of genetic screens begins to illuminate the interaction between influenza virus and the infected cell.


Journal of Virology | 2014

Influenza A Virus Polymerase Is a Site for Adaptive Changes during Experimental Evolution in Bat Cells

Daniel S. Poole; Shuǐqìng Yú; Yíngyún Caì; Jorge M. Dinis; Marcel A. Müller; Ingo Jordan; Thomas C. Friedrich; Jens H. Kuhn; Andrew Mehle

ABSTRACT The recent identification of highly divergent influenza A viruses in bats revealed a new, geographically dispersed viral reservoir. To investigate the molecular mechanisms of host-restricted viral tropism and the potential for transmission of viruses between humans and bats, we exposed a panel of cell lines from bats of diverse species to a prototypical human-origin influenza A virus. All of the tested bat cell lines were susceptible to influenza A virus infection. Experimental evolution of human and avian-like viruses in bat cells resulted in efficient replication and created highly cytopathic variants. Deep sequencing of adapted human influenza A virus revealed a mutation in the PA polymerase subunit not previously described, M285K. Recombinant virus with the PA M285K mutation completely phenocopied the adapted virus. Adaptation of an avian virus-like virus resulted in the canonical PB2 E627K mutation that is required for efficient replication in other mammals. None of the adaptive mutations occurred in the gene for viral hemagglutinin, a gene that frequently acquires changes to recognize host-specific variations in sialic acid receptors. We showed that human influenza A virus uses canonical sialic acid receptors to infect bat cells, even though bat influenza A viruses do not appear to use these receptors for virus entry. Our results demonstrate that bats are unique hosts that select for both a novel mutation and a well-known adaptive mutation in the viral polymerase to support replication. IMPORTANCE Bats constitute well-known reservoirs for viruses that may be transferred into human populations, sometimes with fatal consequences. Influenza A viruses have recently been identified in bats, dramatically expanding the known host range of this virus. Here we investigated the replication of human influenza A virus in bat cell lines and the barriers that the virus faces in this new host. Human influenza A and B viruses infected cells from geographically and evolutionarily diverse New and Old World bats. Viruses mutated during infections in bat cells, resulting in increased replication and cytopathic effects. These mutations were mapped to the viral polymerase and shown to be solely responsible for adaptation to bat cells. Our data suggest that replication of human influenza A viruses in a nonnative host drives the evolution of new variants and may be an important source of genetic diversity.

Collaboration


Dive into the Andrew Mehle's collaboration.

Top Co-Authors

Avatar

Daniel S. Poole

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vy Tran

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Anthony R. Dawson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik A. Karlsson

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

James Kirui

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Stacey Schultz-Cherry

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dipankar Bhattacharya

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge