Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew P. Capaldi is active.

Publication


Featured researches published by Andrew P. Capaldi.


Nature Structural & Molecular Biology | 2002

Im7 folding mechanism: misfolding on a path to the native state.

Andrew P. Capaldi; Sheena E. Radford

Many proteins populate collapsed intermediate states during folding. In order to elucidate the nature and importance of these species, we have mapped the structure of the on-pathway intermediate of the four-helix protein, Im7, together with the conformational changes it undergoes as it folds to the native state. Kinetic data for 29 Im7 point mutants show that the intermediate contains three of the four helices found in the native structure, packed around a specific hydrophobic core. However, the intermediate contains many non-native interactions; as a result, hydrophobic interactions become disrupted in the rate-limiting transition state before the final helix docks onto the developing structure. The results of this study support a hierarchical mechanism of protein folding and explain why the misfolding of Im7 occurs. The data also demonstrate that non-native interactions can play a significant role in folding, even for small proteins with simple topologies.


Nature Genetics | 2008

Structure and function of a transcriptional network activated by the MAPK Hog1

Andrew P. Capaldi; Tommy Kaplan; Ying Liu; Naomi Habib; Aviv Regev; Nir Friedman; Erin K. O'Shea

Cells regulate gene expression using a complex network of signaling pathways, transcription factors and promoters. To gain insight into the structure and function of these networks, we analyzed gene expression in single- and multiple-mutant strains to build a quantitative model of the Hog1 MAPK-dependent osmotic stress response in budding yeast. Our model reveals that the Hog1 and general stress (Msn2/4) pathways interact, at both the signaling and promoter level, to integrate information and create a context-dependent response. This study lays out a path to identifying and characterizing the role of signal integration and processing in other gene regulatory networks.


Nature Structural & Molecular Biology | 2001

Ultrarapid mixing experiments reveal that Im7 folds via an on-pathway intermediate

Andrew P. Capaldi; M. C. Ramachandra Shastry; Heinrich Roder; Sheena E. Radford

Many proteins populate partially organized structures during folding. Since these intermediates often accumulate within the dead time (2–5 ms) of conventional stopped-flow and quench-flow devices, it has been difficult to determine their role in the formation of the native state. Here we use a microcapillary mixing apparatus, with a time resolution of ∼150 μs, to directly follow the formation of an intermediate in the folding of a four-helix protein, Im7. Quantitative kinetic modeling of folding and unfolding data acquired over a wide range of urea concentrations demonstrate that this intermediate ensemble lies on a direct path from the unfolded to the native state.


Journal of Molecular Biology | 2003

Structural Analysis of the Rate-limiting Transition States in the Folding of Im7 and Im9: Similarities and Differences in the Folding of Homologous Proteins

Claire T. Friel; Andrew P. Capaldi; Sheena E. Radford

The bacterial immunity proteins Im7 and Im9 fold with mechanisms of different kinetic complexity. Whilst Im9 folds in a two-state transition at pH 7.0 and 10 degrees C, Im7 populates an on-pathway intermediate under these conditions. In order to assess the role of sequence versus topology in the folding of these proteins, and to analyse the effect of populating an intermediate on the landscape for folding, we have determined the conformational properties of the rate-limiting transition state for Im9 folding/unfolding using Phi(F)-value analysis and have compared the results with similar data obtained previously for Im7. The data show that the rate-limiting transition states for Im9 and Im7 folding/unfolding are similar: both are compact (beta(T)=0.94 and 0.89, respectively) and contain three of the four native helices docked around a specific hydrophobic core. Significant differences are observed, however, in the magnitude of the Phi(F)-values obtained for the two proteins. Of the 20 residues studied in both proteins, ten have Phi(F)-values in Im7 that exceed those in Im9 by more than 0.2, and of these five differ by more than 0.4. The data suggest that the population of an intermediate in Im7 results in folding via a transition state ensemble that is conformationally restricted relative to that of Im9. The data are consistent with the view that topology is an important determinant of folding. Importantly, however, they also demonstrate that while the folding transition state may be conserved in homologous proteins that fold with two and three-state kinetics, the population of an intermediate can have a significant effect on the breadth of the transition state ensemble.


Current Opinion in Structural Biology | 1998

Kinetic studies of β-sheet protein folding

Andrew P. Capaldi; Sheena E. Radford

Abstract New studies have shown that folding of β-sheet proteins can occur with and without intermediates, with fast to slow refolding rates and late to very late transition states. These experiments demonstrate that, despite early speculation to the contrary, β-sheet protein folding does not appear to be fundamentally different from that of helical and mixed α,β proteins.


Genetics | 2014

State Transitions in the TORC1 Signaling Pathway and Information Processing in Saccharomyces cerevisiae

James E. Hughes Hallett; Xiangxia Luo; Andrew P. Capaldi

TOR kinase complex I (TORC1) is a key regulator of cell growth and metabolism in all eukaryotes. Previous studies in yeast have shown that three GTPases—Gtr1, Gtr2, and Rho1—bind to TORC1 in nitrogen and amino acid starvation conditions to block phosphorylation of the S6 kinase Sch9 and activate protein phosphatase 2A (PP2A). This leads to downregulation of 450 Sch9-dependent protein and ribosome synthesis genes and upregulation of 100 PP2A-dependent nitrogen assimilation and amino acid synthesis genes. Here, using bandshift assays and microarray measurements, we show that the TORC1 pathway also populates three other stress/starvation states. First, in glucose starvation conditions, the AMP-activated protein kinase (AMPK/Snf1) and at least one other factor push the TORC1 pathway into an off state, in which Sch9-branch signaling and PP2A-branch signaling are both inhibited. Remarkably, the TORC1 pathway remains in the glucose starvation (PP2A inhibited) state even when cells are simultaneously starved for nitrogen and glucose. Second, in osmotic stress, the MAPK Hog1/p38 drives the TORC1 pathway into a different state, in which Sch9 signaling and PP2A-branch signaling are inhibited, but PP2A-branch signaling can still be activated by nitrogen starvation. Third, in oxidative stress and heat stress, TORC1-Sch9 signaling is blocked while weak PP2A-branch signaling occurs. Together, our data show that the TORC1 pathway acts as an information-processing hub, activating different genes in different conditions to ensure that available energy is allocated to drive growth, amino acid synthesis, or a stress response, depending on the needs of the cell.


Cell Reports | 2013

Inositol Pyrophosphates Regulate Cell Growth and the Environmental Stress Response by Activating the HDAC Rpd3L

Jeremy Worley; Xiangxia Luo; Andrew P. Capaldi

Cells respond to stress and starvation by adjusting their growth rate and enacting stress defense programs. In eukaryotes this involves inactivation of TORC1, which in turn triggers downregulation of ribosome and protein synthesis genes and upregulation of stress response genes. Here we report that the highly conserved inositol pyrophosphate (PP-IP) second messengers (including 1-PP-IP5, 5-PP-IP4, and 5-PP-IP5) are also critical regulators of cell growth and the general stress response, acting in parallel with the TORC1 pathway to control the activity of the class I histone deacetylase Rpd3L. In fact, yeast cells that cannot synthesize any of the PP-IPs mount little to no transcriptional response to osmotic, heat, or oxidative stress. Furthermore, PP-IP-dependent regulation of Rpd3L occurs independently of the role individual PP-IPs (such as 5-PP-IP5) play in activating specialized stress/starvation response pathways. Thus, the PP-IP second messengers simultaneously activate and tune the global response to stress and starvation signals.


eLife | 2015

Snf1/AMPK promotes the formation of Kog1/Raptor-bodies to increase the activation threshold of TORC1 in budding yeast

James E. Hughes Hallett; Xiangxia Luo; Andrew P. Capaldi

The target of rapamycin complex I (TORC1) regulates cell growth and metabolism in eukaryotes. Previous studies have shown that nitrogen and amino acid signals activate TORC1 via the small GTPases, Gtr1/2. However, little is known about the way that other nutrient signals are transmitted to TORC1. Here we report that glucose starvation triggers disassembly of TORC1, and movement of the key TORC1 component Kog1/Raptor to a single body near the edge of the vacuole. These events are driven by Snf1/AMPK-dependent phosphorylation of Kog1 at Ser 491/494 and two nearby prion-like motifs. Kog1-bodies then serve to increase the threshold for TORC1 activation in cells that have been starved for a significant period of time. Together, our data show that Kog1-bodies create hysteresis (memory) in the TORC1 pathway and help ensure that cells remain committed to a quiescent state under suboptimal conditions. We suggest that other protein bodies formed in starvation conditions have a similar function. DOI: http://dx.doi.org/10.7554/eLife.09181.001


Molecular Cell | 2012

TOR-tured Yeast Find a New Way to Stand the Heat

J. Ross Buchan; Andrew P. Capaldi; Roy Parker

In this issue, Takahara and Maeda (2012) discover that together, Pbp1 and sequestration of the TORC1 complex in cytoplasmic mRNP stress granules provides a negative regulatory mechanism for TORC1 signaling during stress.


Methods in Enzymology | 2010

Analysis of Gene Function Using DNA Microarrays

Andrew P. Capaldi

This chapter provides a guide to analyzing gene function using DNA microarrays. First, I discuss the design and interpretation of experiments where gene expression levels in mutant and wild-type strains are compared. I then provide a detailed description of the protocols for isolating mRNA from yeast cells, converting the RNA into dye-labeled cDNA, and hybridizing these samples to a microarray. Finally, I discuss methods for washing, scanning, and analyzing the arrays. Emphasis is placed on describing approaches and techniques that help to minimize the artifacts and noise that so often plague microarray data.

Collaboration


Dive into the Andrew P. Capaldi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil Ferguson

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Li

University of Cambridge

View shared research outputs
Researchain Logo
Decentralizing Knowledge