Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew P. Desbois is active.

Publication


Featured researches published by Andrew P. Desbois.


Applied Microbiology and Biotechnology | 2010

Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential

Andrew P. Desbois; Valerie J. Smith

Amongst the diverse and potent biological activities of free fatty acids (FFAs) is the ability to kill or inhibit the growth of bacteria. The antibacterial properties of FFAs are used by many organisms to defend against parasitic or pathogenic bacteria. Whilst their antibacterial mode of action is still poorly understood, the prime target of FFA action is the cell membrane, where FFAs disrupt the electron transport chain and oxidative phosphorylation. Besides interfering with cellular energy production, FFA action may also result from the inhibition of enzyme activity, impairment of nutrient uptake, generation of peroxidation and auto-oxidation degradation products or direct lysis of bacterial cells. Their broad spectrum of activity, non-specific mode of action and safety makes them attractive as antibacterial agents for various applications in medicine, agriculture and food preservation, especially where the use of conventional antibiotics is undesirable or prohibited. Moreover, the evolution of inducible FFA-resistant phenotypes is less problematic than with conventional antibiotics. The potential for commercial or biomedical exploitation of antibacterial FFAs, especially for those from natural sources, is discussed.


Marine Biotechnology | 2009

A Fatty Acid from the Diatom Phaeodactylum tricornutum is Antibacterial Against Diverse Bacteria Including Multi-resistant Staphylococcus aureus (MRSA)

Andrew P. Desbois; Andrew Mearns-Spragg; Valerie J. Smith

Pathogenic bacteria, such as multidrug-resistant Staphylococcus aureus (MRSA), which are not susceptible to most conventional antibiotics, are causing increased concern in healthcare institutions worldwide. The discovery of novel antibacterial compounds for biomedical exploitation is one avenue that is being pursued to combat these problematic bacteria. Marine eukaryotic microalgae are known to produce numerous useful products but have attracted little attention in the search for novel antibiotic compounds. Cell lysates of the marine diatom, Phaeodactylum tricornutum Bohlin, have been reported to display antibacterial activity in vitro, but the compounds responsible have not been fully identified. In this paper, using column chromatography and reversed-phase high-performance liquid chromatography, we report the isolation of an antibacterial fatty acid. Mass spectrometry and 1H-nuclear magnetic resonance spectroscopy revealed it to be the polyunsaturated fatty acid, eicosapentaenoic acid (EPA). We show that EPA is active against a range of both Gram-positive and Gram-negative bacteria, including MRSA, at micromolar concentrations. These data indicate that it could find application in the topical and systemic treatment of drug-resistant bacterial infections.


Marine Drugs | 2010

Conventional and Unconventional Antimicrobials from Fish, Marine Invertebrates and Micro-algae

Valerie J. Smith; Andrew P. Desbois; Elisabeth A. Dyrynda

All eukaryotic organisms, single-celled or multi-cellular, produce a diverse array of natural anti-infective agents that, in addition to conventional antimicrobial peptides, also include proteins and other molecules often not regarded as part of the innate defences. Examples range from histones, fatty acids, and other structural components of cells to pigments and regulatory proteins. These probably represent very ancient defence factors that have been re-used in new ways during evolution. This review discusses the nature, biological role in host protection and potential biotechnological uses of some of these compounds, focusing on those from fish, marine invertebrates and marine micro-algae.


Applied Microbiology and Biotechnology | 2008

Isolation and structural characterisation of two antibacterial free fatty acids from the marine diatom, Phaeodactylum tricornutum

Andrew P. Desbois; Tomas Lebl; Liming Yan; Valerie J. Smith

One solution to the global crisis of antibiotic resistance is the discovery of novel antimicrobial compounds for clinical application. Marine organisms are an attractive and, as yet, relatively untapped resource of new natural products. Cell extracts from the marine diatom, Phaeodactylum tricornutum, have antibacterial activity and the fatty acid, eicosapentaenoic acid (EPA), has been identified as one compound responsible for this activity. During the isolation of EPA, it became apparent that the extracts contained further antibacterial compounds. The present study was undertaken to isolate these additional antibacterial factors using silica column chromatography and reverse-phase high-performance liquid chromatography. Two antibacterial fractions, each containing a pure compound, were isolated and their chemical structures were investigated by mass spectrometry and nuclear magnetic resonance spectroscopy. The antibacterial compounds were identified as the monounsaturated fatty acid (9Z)-hexadecenoic acid (palmitoleic acid; C16:1 n-7) and the relatively unusual polyunsaturated fatty acid (6Z, 9Z, 12Z)-hexadecatrienoic acid (HTA; C16:3 n-4). Both are active against Gram-positive bacteria with HTA further inhibitory to the growth of the Gram-negative marine pathogen, Listonella anguillarum. Palmitoleic acid is active at micro-molar concentrations, kills bacteria rapidly, and is highly active against multidrug-resistant Staphylococcus aureus. These free fatty acids warrant further investigation as a new potential therapy for drug-resistant infections.


Journal of Antimicrobial Chemotherapy | 2011

Wax moth larva (Galleria mellonella): an in vivo model for assessing the efficacy of antistaphylococcal agents

Andrew P. Desbois; Peter J. Coote

OBJECTIVES To investigate whether the wax moth larva, Galleria mellonella, is a suitable host for assessing the in vivo efficacy of antistaphylococcal agents against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) infections. METHODS Wax moth larvae were infected with increasing doses of S. aureus to investigate the effect of inoculum size on larval survival. In addition, infected wax moth larvae were treated with daptomycin, penicillin or vancomycin to examine whether these agents were effective against S. aureus and MRSA infections in vivo. RESULTS Increasing inoculum doses of live S. aureus cells resulted in greater larval mortality, but heat-killed bacteria and cell-free culture filtrates had no detrimental effects on survival. Larval mortality rate also depended on the post-inoculation incubation temperature. After larvae were infected with S. aureus, larval survival was enhanced by administering the antistaphylococcal antibiotics daptomycin or vancomycin. Larval survival increased with increasing doses of the antibiotics. Moreover, penicillin improved survival of larvae infected with a penicillin-susceptible methicillin-susceptible S. aureus (MSSA) strain, but it was ineffective at similar doses in larvae infected with MRSA (penicillin resistant). Daptomycin and vancomycin were also effective when administered to the larvae prior to infection with bacteria. CONCLUSIONS This is the first report to demonstrate that antibiotics are effective in the wax moth larva model for the treatment of infections caused by Gram-positive bacteria. The new wax moth larva model is a useful preliminary model for assessing the in vivo efficacy of candidate antistaphylococcal agents before proceeding to mammalian studies, which may reduce animal experimentation and expense.


Advances in Applied Microbiology | 2012

Utility of Greater Wax Moth Larva (Galleria mellonella) for Evaluating the Toxicity and Efficacy of New Antimicrobial Agents.

Andrew P. Desbois; Peter J. Coote

There is an urgent need for new antimicrobial agents to combat infections caused by drug-resistant pathogens. Once a compound is shown to be effective in vitro, it is necessary to evaluate its efficacy in an animal infection model. Typically, this is achieved using a mammalian model, but such experiments are costly, time consuming, and require full ethical consideration. Hence, cheaper and ethically more acceptable invertebrate models of infection have been introduced, including the larvae of the greater wax moth Galleria mellonella. Invertebrates have an immune system that is functionally similar to the innate immune system of mammals, and often identical virulence and pathogenicity factors are used by human pathogenic microbes to infect wax moth larvae and mammals. Moreover, the virulence of many human pathogens is comparable in wax moth larvae and mammals. Using key examples from the literature, this chapter highlights the benefits of using the wax moth larva model to provide a rapid, inexpensive, and reliable evaluation of the toxicity and efficacy of new antimicrobial agents in vivo and prior to the use of more expensive mammalian models. This simple insect model can bridge the gap between in vitro studies and mammalian experimentation by screening out compounds with a low likelihood of success, while providing greater justification for further studies in mammalian systems. Thus, broader implementation of the wax moth larva model into anti-infective drug discovery and development programs could reduce the use of mammals during preclinical assessments and the overall cost of drug development.


Marine Drugs | 2013

Antibacterial Activity of Long-Chain Polyunsaturated Fatty Acids against Propionibacterium acnes and Staphylococcus aureus

Andrew P. Desbois; Keelan C. Lawlor

New compounds are needed to treat acne and superficial infections caused by Propionibacterium acnes and Staphylococcus aureus due to the reduced effectiveness of agents used at present. Long-chain polyunsaturated fatty acids (LC-PUFAs) are attracting attention as potential new topical treatments for Gram-positive infections due to their antimicrobial potency and anti-inflammatory properties. This present study aimed to investigate the antimicrobial effects of six LC-PUFAs against P. acnes and S. aureus to evaluate their potential to treat infections caused by these pathogens. Minimum inhibitory concentrations were determined against P. acnes and S. aureus, and the LC-PUFAs were found to inhibit bacterial growth at 32–1024 mg/L. Generally, P. acnes was more susceptible to the growth inhibitory actions of LC-PUFAs, but these compounds were bactericidal only for S. aureus. This is the first report of antibacterial activity attributed to 15-hydroxyeicosapentaenoic acid (15-OHEPA) and 15-hydroxyeicosatrienoic acid (HETrE), while the anti-P. acnes effects of the six LC-PUFAs used herein are novel observations. During exposure to the LC-PUFAs, S. aureus cells were killed within 15–30 min. Checkerboard assays demonstrated that the LC-PUFAs did not antagonise the antimicrobial potency of clinical agents used presently against P. acnes and S. aureus. However, importantly, synergistic interactions against S. aureus were detected for combinations of benzoyl peroxide with 15-OHEPA, dihomo-γ-linolenic acid (DGLA) and HETrE; and neomycin with 15-OHEPA, DGLA, eicosapentaenoic acid, γ-linolenic acid and HETrE. In conclusion, LC-PUFAs warrant further evaluation as possible new agents to treat skin infections caused by P. acnes and S. aureus, especially in synergistic combinations with antimicrobial agents already used clinically.


Recent Patents on Anti-infective Drug Discovery | 2012

Potential Applications of Antimicrobial Fatty Acids in Medicine, Agriculture and Other Industries

Andrew P. Desbois

The antimicrobial effects of free fatty acids are well recognised and these compounds can prevent the growth of or directly kill bacteria, fungi and other microbes by affecting multiple cellular targets, including the cell membrane and components found therein. Moreover, fatty acids exert detrimental effects on microbial pathogens by interfering with mechanisms of virulence, such as preventing biofilm formation and inhibiting the production of toxins and enzymes. The antimicrobial properties of free fatty acids can be exploited for the preservation of perishable products, such as food and cosmetics, and for the prevention and treatment of infections. These safe natural products are particularly useful in circumstances where antimicrobial activity is required but where the use of conventional antibiotics is undesirable or forbidden. This review focuses on the most promising prospects for exploiting the antimicrobial properties of free fatty acids for applications in various industries. The benefits of using fatty acids as antimicrobial agents are discussed and relevant recent patents are highlighted.


International Journal of Antimicrobial Agents | 2010

In vivo efficacy of the antimicrobial peptide ranalexin in combination with the endopeptidase lysostaphin against wound and systemic meticillin-resistant Staphylococcus aureus (MRSA) infections

Andrew P. Desbois; Curtis G. Gemmell; Peter J. Coote

New treatments are urgently required for infections caused by meticillin-resistant Staphylococcus aureus (MRSA) as these strains are often resistant to multiple conventional antibiotics. Earlier studies showed that ranalexin, an antimicrobial peptide (AMP), in combination with lysostaphin, an antistaphylococcal endopeptidase, synergistically inhibits the growth of MRSA, meaning that it deserved consideration as a new anti-S. aureus therapy. Using haemolysis and Vero cell viability assays, ranalexin with lysostaphin is proven to be non-toxic at antibacterial concentrations. In human serum, ranalexin with lysostaphin is significantly more effective against MRSA than treatment with either component alone. In a rabbit model of wound infection, ranalexin with lysostaphin reduced MRSA in the wound by ca. 3.5log(10) colony-forming units (CFU) compared with the untreated control. The combination is significantly more effective than treatment with ranalexin or lysostaphin alone. In a mouse model of systemic infection, ranalexin with lysostaphin reduced MRSA kidney burden by ca. 1log(10)CFU/g compared with untreated controls or treatment with ranalexin or lysostaphin alone. Importantly, the combination is synergistically bactericidal against various S. aureus isolates in vitro, including those with reduced susceptibility to lysostaphin or vancomycin. Ranalexin and lysostaphin could be incorporated in wound dressings for the prevention and treatment of topical S. aureus infections. That AMPs can enhance the antibacterial effectiveness of lysostaphin in vivo highlights a new avenue of research in the fight against drug-resistant staphylococci.


Journal of the Marine Biological Association of the United Kingdom | 2010

Differential antibacterial activities of fusiform and oval morphotypes of Phaeodactylum tricornutum (Bacillariophyceae)

Andrew P. Desbois; Michael Walton; Valerie J. Smith

The diatom, Phaeodactylum tricornutum is a common inhabitant of inshore waters and can exist in different morphotypes that are thought to be adapted for survival in different habitats. Despite this diatom being widely used for physiological and genetic studies of microalgae, little is known about biochemical or physiological differences between the cell morphotypes. The present study was aimed at comparing differences in the antibacterial properties of the fusiform and oval morphotypes, the dominant cell types found in laboratory cultures of most strains of P. tricornutum. In cultures differing in proportions of fusiform and oval cells, there is a significant and positive correlation between the proportion of cells in the fusiform morphotype and the antibacterial activity of cell extracts. Extracts prepared from cultures enriched for fusiform cells (∼76%) show greater antibacterial activity against the Gram-positive bacterium, Staphylococcus aureus, than those prepared from pure (100%) oval cultures. Thus fusiform cells contain greater antibacterial activity per cell compared to the ovals. Gas-liquid chromatographic analyses of the extracts reveal that those from enriched fusiform populations contain significantly greater levels of the free fatty acids, eicosapentaenoic acid (EPA), hexadecatrienoic acid (HTA) and palmitoleic acid (PA) than the pure oval cell cultures. These free fatty acids from P. tricornutum have been previously shown by us to have potent antibacterial activity against S. aureus. Free fatty acids, released from damaged microalgal cells, defend the microalgal population against grazing predators but, here, we suggest that these free fatty acids could also act against pathogenic bacteria in the vicinity of the algae. As cell extracts from the fusiform cells contain greater quantities of these fatty acids, fusiform cells may have greater potential than the ovals for this type of protection.

Collaboration


Dive into the Andrew P. Desbois's collaboration.

Top Co-Authors

Avatar

Peter J. Coote

University of St Andrews

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge