Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew P. Feinberg is active.

Publication


Featured researches published by Andrew P. Feinberg.


Nature Reviews Cancer | 2004

The history of cancer epigenetics

Andrew P. Feinberg; Benjamin Tycko

Since its discovery in 1983, the epigenetics of human cancer has been in the shadows of human cancer genetics. But this area has become increasingly visible with a growing understanding of specific epigenetic mechanisms and their role in cancer, including hypomethylation, hypermethylation, loss of imprinting and chromatin modification. This timeline traces the field from its conception to the present day. It also addresses the genetic basis of epigenetic changes — an emerging area that promises to unite cancer genetics and epigenetics, and might serve as a model for understanding the epigenetic basis of human disease more generally.


Nature | 2010

Epigenetic memory in induced pluripotent stem cells

Kitai Kim; Akiko Doi; Bo Wen; Kitwa Ng; Rui Zhao; Patrick Cahan; J. Kim; Martin J. Aryee; Hongkai Ji; Lauren I. R. Ehrlich; Akiko Yabuuchi; Ayumu Takeuchi; K. C. Cunniff; Huo Hongguang; Shannon McKinney-Freeman; Olaia Naveiras; Tae-Min Yoon; Rafael A. Irizarry; Namyoung Jung; Jun Seita; Jacob Hanna; Peter Murakami; Rudolf Jaenisch; Ralph Weissleder; Stuart H. Orkin; Irving L. Weissman; Andrew P. Feinberg; George Q. Daley

Somatic cell nuclear transfer and transcription-factor-based reprogramming revert adult cells to an embryonic state, and yield pluripotent stem cells that can generate all tissues. Through different mechanisms and kinetics, these two reprogramming methods reset genomic methylation, an epigenetic modification of DNA that influences gene expression, leading us to hypothesize that the resulting pluripotent stem cells might have different properties. Here we observe that low-passage induced pluripotent stem cells (iPSCs) derived by factor-based reprogramming of adult murine tissues harbour residual DNA methylation signatures characteristic of their somatic tissue of origin, which favours their differentiation along lineages related to the donor cell, while restricting alternative cell fates. Such an ‘epigenetic memory’ of the donor tissue could be reset by differentiation and serial reprogramming, or by treatment of iPSCs with chromatin-modifying drugs. In contrast, the differentiation and methylation of nuclear-transfer-derived pluripotent stem cells were more similar to classical embryonic stem cells than were iPSCs. Our data indicate that nuclear transfer is more effective at establishing the ground state of pluripotency than factor-based reprogramming, which can leave an epigenetic memory of the tissue of origin that may influence efforts at directed differentiation for applications in disease modelling or treatment.


Nature Genetics | 2009

The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores

Rafael A. Irizarry; Christine Ladd-Acosta; Bo Wen; Zhijin Wu; Carolina Montano; Patrick Onyango; Hengmi Cui; Kevin Gabo; Michael Rongione; Maree J. Webster; Hong-Fei Ji; James B. Potash; Sarven Sabunciyan; Andrew P. Feinberg

Alterations in DNA methylation (DNAm) in cancer have been known for 25 years, including hypomethylation of oncogenes and hypermethylation of tumor suppressor genes1. However, most studies of cancer methylation have assumed that functionally important DNAm will occur in promoters, and that most DNAm changes in cancer occur in CpG islands2,3. Here we show that most methylation alterations in colon cancer occur not in promoters, and also not in CpG islands but in sequences up to 2 kb distant which we term “CpG island shores.” CpG island shore methylation was strongly related to gene expression, and it was highly conserved in mouse, discriminating tissue types regardless of species of origin. There was a surprising overlap (45-65%) of the location of colon cancer-related methylation changes with those that distinguished normal tissues, with hypermethylation enriched closer to the associated CpG islands, and hypomethylation enriched further from the associated CpG island and resembling non-colon normal tissues. Thus, methylation changes in cancer are at sites that vary normally in tissue differentiation, and they are consistent with the epigenetic progenitor model of cancer4, that epigenetic alterations affecting tissue-specific differentiation are the predominant mechanism by which epigenetic changes cause cancer.


Nature | 2002

DNMT1 and DNMT3b cooperate to silence genes in human cancer cells

Ina Rhee; Kurtis E. Bachman; Ben Ho Park; Kam Wing Jair; Ray Whay Chiu Yen; Kornel E. Schuebel; Hengmi Cui; Andrew P. Feinberg; Christoph Lengauer; Kenneth W. Kinzler; Stephen B. Baylin; Bert Vogelstein

Inactivation of tumour suppressor genes is central to the development of all common forms of human cancer. This inactivation often results from epigenetic silencing associated with hypermethylation rather than intragenic mutations. In human cells, the mechanisms underlying locus-specific or global methylation patterns remain unclear. The prototypic DNA methyltransferase, Dnmt1, accounts for most methylation in mouse cells, but human cancer cells lacking DNMT1 retain significant genomic methylation and associated gene silencing. We disrupted the human DNMT3b gene in a colorectal cancer cell line. This deletion reduced global DNA methylation by less than 3%. Surprisingly, however, genetic disruption of both DNMT1 and DNMT3b nearly eliminated methyltransferase activity, and reduced genomic DNA methylation by greater than 95%. These marked changes resulted in demethylation of repeated sequences, loss of insulin-like growth factor II (IGF2) imprinting, abrogation of silencing of the tumour suppressor gene p16INK4a, and growth suppression. Here we demonstrate that two enzymes cooperatively maintain DNA methylation and gene silencing in human cancer cells, and provide compelling evidence that such methylation is essential for optimal neoplastic proliferation.


Nature Genetics | 2009

Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts

Akiko Doi; In-Hyun Park; Bo Wen; Peter Murakami; Martin J. Aryee; Rafael A. Irizarry; Brian Herb; Christine Ladd-Acosta; Junsung Rho; Sabine Loewer; Justine D. Miller; Thorsten M. Schlaeger; George Q. Daley; Andrew P. Feinberg

Induced pluripotent stem (iPS) cells are derived by epigenetic reprogramming, but their DNA methylation patterns have not yet been analyzed on a genome-wide scale. Here, we find substantial hypermethylation and hypomethylation of cytosine-phosphate-guanine (CpG) island shores in nine human iPS cell lines as compared to their parental fibroblasts. The differentially methylated regions (DMRs) in the reprogrammed cells (denoted R-DMRs) were significantly enriched in tissue-specific (T-DMRs; 2.6-fold, P < 10−4) and cancer-specific DMRs (C-DMRs; 3.6-fold, P < 10−4). Notably, even though the iPS cells are derived from fibroblasts, their R-DMRs can distinguish between normal brain, liver and spleen cells and between colon cancer and normal colon cells. Thus, many DMRs are broadly involved in tissue differentiation, epigenetic reprogramming and cancer. We observed colocalization of hypomethylated R-DMRs with hypermethylated C-DMRs and bivalent chromatin marks, and colocalization of hypermethylated R-DMRs with hypomethylated C-DMRs and the absence of bivalent marks, suggesting two mechanisms for epigenetic reprogramming in iPS cells and cancer.


American Journal of Human Genetics | 2003

Association of In Vitro Fertilization with Beckwith-Wiedemann Syndrome and Epigenetic Alterations of LIT1 and H19

Michael R. DeBaun; Emily L. Niemitz; Andrew P. Feinberg

Recent data in humans and animals suggest that assisted reproductive technology (ART) might affect the epigenetics of early embryogenesis and might cause birth defects. We report the first evidence, to our knowledge, that ART is associated with a human overgrowth syndrome-namely, Beckwith-Wiedemann syndrome (BWS). In a prospective study, the prevalence of ART was 4.6% (3 of 65), versus the background rate of 0.8% in the United States. A total of seven children with BWS were born after ART-five of whom were conceived after intracytoplasmic sperm injection. Molecular studies of six of the children indicate that five of the six have specific epigenetic alterations associated with BWS-four at LIT1 and one at both LIT1 and H19. We discuss the implications of our finding that ART is associated with human overgrowth, similar to the large offspring syndrome reported in ruminants.


Nature | 2008

Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA

Wenqiang Yu; David Gius; Patrick Onyango; Kristi Muldoon-Jacobs; Judith Karp; Andrew P. Feinberg; Hengmi Cui

Tumour suppressor genes (TSGs) inhibiting normal cellular growth are frequently silenced epigenetically in cancer. DNA methylation is commonly associated with TSG silencing, yet mutations in the DNA methylation initiation and recognition machinery in carcinogenesis are unknown. An intriguing possible mechanism for gene regulation involves widespread non-coding RNAs such as microRNA, Piwi-interacting RNA and antisense RNAs. Widespread sense–antisense transcripts have been systematically identified in mammalian cells, and global transcriptome analysis shows that up to 70% of transcripts have antisense partners and that perturbation of antisense RNA can alter the expression of the sense gene. For example, it has been shown that an antisense transcript not naturally occurring but induced by genetic mutation leads to gene silencing and DNA methylation, causing thalassaemia in a patient. Here we show that many TSGs have nearby antisense RNAs, and we focus on the role of one RNA in silencing p15, a cyclin-dependent kinase inhibitor implicated in leukaemia. We found an inverse relation between p15 antisense (p15AS) and p15 sense expression in leukaemia. A p15AS expression construct induced p15 silencing in cis and in trans through heterochromatin formation but not DNA methylation; the silencing persisted after p15AS was turned off, although methylation and heterochromatin inhibitors reversed this process. The p15AS-induced silencing was Dicer-independent. Expression of exogenous p15AS in mouse embryonic stem cells caused p15 silencing and increased growth, through heterochromatin formation, as well as DNA methylation after differentiation of the embryonic stem cells. Thus, natural antisense RNA may be a trigger for heterochromatin formation and DNA methylation in TSG silencing in tumorigenesis.


JAMA | 2008

Intra-individual change over time in DNA methylation with familial clustering.

Hans T. Bjornsson; Martin I. Sigurdsson; M. Daniele Fallin; Rafael A. Irizarry; Thor Aspelund; Hengmi Cui; Wenqiang Yu; Michael Rongione; Tomas J. Ekström; Tamara B. Harris; Lenore J. Launer; Gudny Eiriksdottir; M. Leppert; Carmen Sapienza; Vilmundur Gudnason; Andrew P. Feinberg

CONTEXT Changes over time in epigenetic marks, which are modifications of DNA such as by DNA methylation, may help explain the late onset of common human diseases. However, changes in methylation or other epigenetic marks over time in a given individual have not yet been investigated. OBJECTIVES To determine whether there are longitudinal changes in global DNA methylation in individuals and to evaluate whether methylation maintenance demonstrates familial clustering. DESIGN, SETTING, AND PARTICIPANTS We measured global DNA methylation by luminometric methylation assay, a quantitative measurement of genome-wide DNA methylation, on DNA sampled at 2 visits on average 11 years apart in 111 individuals from an Icelandic cohort (1991 and 2002-2005) and on average 16 years apart in 126 individuals from a Utah sample (1982-1985 and 1997-2005). MAIN OUTCOME MEASURE Global methylation changes over time. RESULTS Twenty-nine percent of Icelandic individuals showed greater than 10% methylation change over time (P < .001). The family-based Utah sample also showed intra-individual changes over time, and further demonstrated familial clustering of methylation change (P = .003). The family showing the greatest global methylation loss also demonstrated the greatest loss of gene-specific methylation by a separate methylation assay. CONCLUSION These data indicate that methylation changes over time and suggest that methylation maintenance may be under genetic control.


Nature Biotechnology | 2013

Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis

Yun Liu; Martin J. Aryee; Leonid Padyukov; M. Daniele Fallin; Espen Hesselberg; Arni Runarsson; Lovisa E. Reinius; Nathalie Acevedo; Margaret A. Taub; Marcus Ronninger; Klementy Shchetynsky; Annika Scheynius; Juha Kere; Lars Alfredsson; Lars Klareskog; Tomas J. Ekström; Andrew P. Feinberg

Epigenetic mechanisms integrate genetic and environmental causes of disease, but comprehensive genome-wide analyses of epigenetic modifications have not yet demonstrated robust association with common diseases. Using Illumina HumanMethylation450 arrays on 354 anti-citrullinated protein antibody–associated rheumatoid arthritis cases and 337 controls, we identified two clusters within the major histocompatibility complex (MHC) region whose differential methylation potentially mediates genetic risk for rheumatoid arthritis. To reduce confounding factors that have hampered previous epigenome-wide studies, we corrected for cellular heterogeneity by estimating and adjusting for cell-type proportions in our blood-derived DNA samples and used mediation analysis to filter out associations likely to be a consequence of disease. Four CpGs also showed an association between genotype and variance of methylation. The associations for both clusters replicated at least one CpG (P < 0.01), with the rest showing suggestive association, in monocyte cell fractions in an independent cohort of 12 cases and 12 controls. Thus, DNA methylation is a potential mediator of genetic risk.


Nature | 2010

Comprehensive methylome map of lineage commitment from haematopoietic progenitors.

Hong-chen Ji; Lauren I. R. Ehrlich; Jun Seita; Peter Murakami; Akiko Doi; Paul Lindau; Hwajin Lee; Martin J. Aryee; Rafael A. Irizarry; Kitai Kim; Derrick J. Rossi; Matthew A. Inlay; Thomas Serwold; Holger Karsunky; Lena Ho; George Q. Daley; Irving L. Weissman; Andrew P. Feinberg

Epigenetic modifications must underlie lineage-specific differentiation as terminally differentiated cells express tissue-specific genes, but their DNA sequence is unchanged. Haematopoiesis provides a well-defined model to study epigenetic modifications during cell-fate decisions, as multipotent progenitors (MPPs) differentiate into progressively restricted myeloid or lymphoid progenitors. Although DNA methylation is critical for myeloid versus lymphoid differentiation, as demonstrated by the myeloerythroid bias in Dnmt1 hypomorphs, a comprehensive DNA methylation map of haematopoietic progenitors, or of any multipotent/oligopotent lineage, does not exist. Here we examined 4.6 million CpG sites throughout the genome for MPPs, common lymphoid progenitors (CLPs), common myeloid progenitors (CMPs), granulocyte/macrophage progenitors (GMPs), and thymocyte progenitors (DN1, DN2, DN3). Marked epigenetic plasticity accompanied both lymphoid and myeloid restriction. Myeloid commitment involved less global DNA methylation than lymphoid commitment, supported functionally by myeloid skewing of progenitors following treatment with a DNA methyltransferase inhibitor. Differential DNA methylation correlated with gene expression more strongly at CpG island shores than CpG islands. Many examples of genes and pathways not previously known to be involved in choice between lymphoid/myeloid differentiation have been identified, such as Arl4c and Jdp2. Several transcription factors, including Meis1, were methylated and silenced during differentiation, indicating a role in maintaining an undifferentiated state. Additionally, epigenetic modification of modifiers of the epigenome seems to be important in haematopoietic differentiation. Our results directly demonstrate that modulation of DNA methylation occurs during lineage-specific differentiation and defines a comprehensive map of the methylation and transcriptional changes that accompany myeloid versus lymphoid fate decisions.

Collaboration


Dive into the Andrew P. Feinberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hengmi Cui

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maxwell P. Lee

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Bo Wen

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge