Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew P. Negri is active.

Publication


Featured researches published by Andrew P. Negri.


Coral Reefs | 1999

Natural inducers for coral larval metamorphosis

Andrew Heyward; Andrew P. Negri

Abstract Coral gametes from Acropora millepora (Ehrenberg, 1834) and from multi-species spawning slicks provided larvae for use in metamorphosis assays with a selection of naturally occurring inducer chemicals. Four species of crustose coralline algae, one non-coralline crustose alga and two branching coralline algae induced larval metamorphosis. However, one additional species of branching coralline algae did not produce a larval response. Metamorphosis was also observed when larvae were exposed to skeleton from the massive coral Goniastrea retiformis (Lamarck, 1816) and to calcified reef rubble, demonstrating metamorphosis is possible in the absence of encrusting algae. Chemical extracts from these algae and the coral skeleton, obtained using either decalcification or simple methanol extraction procedures, also contained active inducers. These results extend the number of crustose algal species known to induce coral metamorphosis, suggest that some inducers may not necessarily be strongly associated with the calcified algal cell walls, and indicate that inducer sources in reef habitats may be more diverse than previously reported.


Ecology | 2004

Recognition and selection of settlement substrata determine post-settlement survival in corals

Lindsay Harrington; Katharina E. Fabricius; Glenn De'ath; Andrew P. Negri

Habitat recognition and selective settlement by dispersive propagules greatly increases the post-settlement survival chances of sessile organisms. To better understand the key role some species can play in the structure of highly complex coral reef ecosystems, we compare the role of two independent, but sequential, processes: settlement choice and post-settlement survival. This study describes the chemical and physical recognition and ranking of specific settlement substrata by coral larvae. Several species of crustose coralline algae (CCA) are known to induce coral settlement; however they also employ physical and biological anti-settlement defense strategies that vary greatly in effectiveness. We examine the interactions between settling larvae of two common reef building coral species (Acropora tenuis and A. millepora) and five species of CCA (Neogoniolithon fosliei, Porolithon onkodes, Hydrolithon reinboldii, Titanoderma prototypum, and Lithoporella melobesioides) that co-occur on reef crests and slopes of the Great Barrier Reef, Australia. Distinct settlement patterns were observed when coral larvae were provided with a choice of settlement substrata. Settlement on the most preferred substratum, the CCA species T. prototypum, was 15 times higher than on N. fosliei, the least preferred substratum. The rates of post-settlement survival of the corals also varied between CCA species in response to their anti-settlement strategies (shedding of surface cell layers, overgrowth, and potential chemical deterrents). Rates of larval settlement, post-settlement survival, and the sensitivity of larvae to chemical extracts of CCA were all positively correlated across the five species of CCA. Nonliving settlement substrata on coral reefs is sparse; consequently the fact that only a few CCA species (notably T. prototypum) facilitate coral recruitment, has important implications for structuring the reef ecosystem.


Applied and Environmental Microbiology | 2004

Metamorphosis of a Scleractinian Coral in Response to Microbial Biofilms

Nicole S. Webster; Luke Smith; Andrew Heyward; Joy E. M. Watts; Richard I. Webb; Linda L. Blackall; Andrew P. Negri

ABSTRACT Microorganisms have been reported to induce settlement and metamorphosis in a wide range of marine invertebrate species. However, the primary cue reported for metamorphosis of coral larvae is calcareous coralline algae (CCA). Herein we report the community structure of developing coral reef biofilms and the potential role they play in triggering the metamorphosis of a scleractinian coral. Two-week-old biofilms induced metamorphosis in less than 10% of larvae, whereas metamorphosis increased significantly on older biofilms, with a maximum of 41% occurring on 8-week-old microbial films. There was a significant influence of depth in 4- and 8-week biofilms, with greater levels of metamorphosis occurring in response to shallow-water communities. Importantly, larvae were found to settle and metamorphose in response to microbial biofilms lacking CCA from both shallow and deep treatments, indicating that microorganisms not associated with CCA may play a significant role in coral metamorphosis. A polyphasic approach consisting of scanning electron microscopy, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE) revealed that coral reef biofilms were comprised of complex bacterial and microalgal communities which were distinct at each depth and time. Principal-component analysis of FISH data showed that the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Cytophaga-Flavobacterium of Bacteroidetes had the largest influence on overall community composition. A low abundance of Archaea was detected in almost all biofilms, providing the first report of Archaea associated with coral reef biofilms. No differences in the relative densities of each subdivision of Proteobacteria were observed between slides that induced larval metamorphosis and those that did not. Comparative cluster analysis of bacterial DGGE patterns also revealed that there were clear age and depth distinctions in biofilm community structure; however, no difference was detected in banding profiles between biofilms which induced larval metamorphosis and those where no metamorphosis occurred. This investigation demonstrates that complex microbial communities can induce coral metamorphosis in the absence of CCA.


The ISME Journal | 2008

Temperature thresholds for bacterial symbiosis with a sponge

Nicole S. Webster; Rose Cobb; Andrew P. Negri

The impact of elevated seawater temperature on bacterial communities within the marine sponge Rhopaloeides odorabile was assessed. Sponges were exposed to temperatures ranging between 27 and 33 °C. No differences in bacterial community composition or sponge health were detected in treatments between 27 and 31 °C. In contrast, sponges exposed to 33 °C exhibited a complete loss of the primary cultivated symbiont within 24 h and cellular necrosis after 3 days. Furthermore, denaturing gradient gel electrophoresis (DGGE) and clone sequence analysis detected a dramatic shift in bacterial community composition between 31 and 33 °C. Within the first 24 h most of the DGGE bands detected in samples from 27 to 31 °C were absent from the 33 °C sponges whereas eight bands were detected exclusively in the 33 °C sponges. The 16S rRNA sequencing revealed that most of the microbes from sponges exposed to 27–31 °C had highest homology to known sponge-associated bacteria. In contrast, many of the microbes from sponges exposed to 33 °C were similar to sequences previously retrieved from diseased and bleached corals. The 16S rRNA clone library analysis also detected a significant shift in bacterial community structure. The 27 °C library was composed of Proteobacteria, Actinobacteria, Nitrospira, Acidobacteria and Chloroflexi whereas the 33 °C library contained sequences from the Proteobacteria, Bacteroidetes and Firmicutes. The clear shifts in community composition at elevated temperatures can be attributed to the loss of symbionts and to the establishment of alien microbial populations including potential pathogens. Breakdown of symbioses and stress in the sponge occurred at temperatures identical to those reported for coral bleaching, indicating that sponges may be similarly threatened by climate change.


FEMS Microbiology Ecology | 2004

Phylogenetic and functional diversity of the cultivable bacterial community associated with the paralytic shellfish poisoning dinoflagellate Gymnodinium catenatum

David H. Green; Lyndon E. Llewellyn; Andrew P. Negri; Susan I. Blackburn; Christopher J. S. Bolch

Gymnodinium catenatum is one of several dinoflagellates that produce a suite of neurotoxins called the paralytic shellfish toxins (PST), responsible for outbreaks of paralytic shellfish poisoning in temperate and tropical waters. Previous research suggested that the bacteria associated with the surface of the sexual resting stages (cyst) were important to the production of PST by G. catenatum. This study sought to characterise the cultivable bacterial diversity of seven different strains of G. catenatum that produce both high and abnormally low amounts of PST, with the long-term aim of understanding the role the bacterial flora has in bloom development and toxicity of this alga. Sixty-one bacterial isolates were cultured and phylogenetically identified as belonging to the Proteobacteria (70%), Bacteroidetes (26%) or Actinobacteria (3%). The Alphaproteobacteria were the most numerous both in terms of the number of isolates cultured (49%) and were also the most abundant type of bacteria in each G. catenatum culture. Two phenotypic (functional) traits inferred from the phylogenetic data were shown to be a common feature of the bacteria present in each G. catenatum culture: firstly, Alphaproteobacteria capable of aerobic anoxygenic photosynthesis, and secondly, Gammaproteobacteria capable of hydrocarbon utilisation and oligotrophic growth. In relation to reports of autonomous production of PST by dinoflagellate-associated bacteria, PST production by bacterial isolates was investigated, but none were shown to produce any PST-like toxins. Overall, this study has identified a number of emergent trends in the bacterial community of G. catenatum which are mirrored in the bacterial flora of other dinoflagellates, and that are likely to be of especial relevance to the population dynamics of natural and harmful algal blooms.


Marine Pollution Bulletin | 2008

Comparative effects of herbicides on photosynthesis and growth of tropical estuarine microalgae

Marie Magnusson; Kirsten Heimann; Andrew P. Negri

Pulse amplitude modulation (PAM) fluorometry is ideally suited to measure the sub-lethal impacts of photosystem II (PSII)-inhibiting herbicides on microalgae, but key relationships between effective quantum yield [Y(II)] and the traditional endpoints growth rate (micro) and biomass increase are unknown. The effects of three PSII-inhibiting herbicides; diuron, hexazinone and atrazine, were examined on two tropical benthic microalgae; Navicula sp. (Heterokontophyta) and Nephroselmis pyriformis (Chlorophyta). The relationships between Y(II), micro and biomass increase were consistent (r2 > or =0.90) and linear (1:1), validating the utility of PAM fluorometry as a rapid and reliable technique to measure sub-lethal toxicity thresholds of PSII-inhibiting herbicides in these microalgae. The order of toxicity (EC50 range) was: diuron (16-33 nM) > hexazinone (25-110 nM) > atrazine (130-620 nm) for both algal species. Growth rate and photosynthesis were affected at diuron concentrations that have been detected in coastal areas of the Great Barrier Reef.


Marine Pollution Bulletin | 2010

Additive toxicity of herbicide mixtures and comparative sensitivity of tropical benthic microalgae

Marie Magnusson; Kirsten Heimann; Pamela Quayle; Andrew P. Negri

Natural waters often contain complex mixtures of unknown contaminants potentially posing a threat to marine communities through chemical interactions. Here, acute effects of the photosystem II-inhibiting herbicides diuron, tebuthiuron, atrazine, simazine, and hexazinone, herbicide breakdown products (desethyl-atrazine (DEA) and 3,4-dichloroaniline (3,4-DCA)) and binary mixtures, were investigated using three tropical benthic microalgae; Navicula sp. and Cylindrotheca closterium (Ochrophyta) and Nephroselmis pyriformis (Chlorophyta), and one standard test species, Phaeodactylum tricornutum (Ochrophyta), in a high-throughput Maxi-Imaging-PAM bioassay (Maxi-IPAM). The order of toxicity was; diuron > hexazinone > tebuthiuron > atrazine > simazine > DEA > 3,4-DCA for all species. The tropical green alga N. pyriformis was up to 10-fold more sensitive than the diatoms tested here and reported for coral symbionts, and is recommended as a standard tropical test species for future research. All binary mixtures exhibited additive toxicity, and the use of herbicide equivalents (HEq) is therefore recommended in order to incorporate total-maximum-load measures for environmental regulatory purposes.


Marine Pollution Bulletin | 2000

Inhibition of fertilization and larval metamorphosis of the coral Acropora millepora (Ehrenberg, 1834) by petroleum products

Andrew P. Negri; Andrew Heyward

Accidental oil spills from ships or rigs and inputs of effluent such as production formation water (PFW) are key perceived threats to tropical biota from industry activities. Scleractinian corals are an important functional component of tropical reefs and the abundance, diversity and resilience of coral communities can be used as an indicator of ecosystem health. In this paper, we report the effects of petroleum products, including water accommodated fractions (WAF) of crude oil, PFW and dispersant (Corexit 9527), on fertilization and larval metamorphosis of the widespread scleractinian coral, Acropora millepora (Ehrenberg, 1834) in laboratory-based assays. At 20% v/v PFW fertilization was inhibited by 25%. This concentration was equivalent 0.0721 mg l−1 total hydrocarbon (THC). In contrast, larval metamorphosis was more sensitive to this effluent, with 98% metamorphosis inhibited at the same concentration. Crude oil WAF did not inhibit fertilization of gametes until dispersant was introduced. Dispersed oil was slightly more toxic to fertilization than dispersant alone, suggesting toxicity to that event may be additive. The minimum concentration of dispersed oil which inhibited fertilization was 0.0325 mg l−1 THC. Larval metamorphosis was more sensitive than fertilization to crude oil. Although crude oil and dispersant inhibited larval metamorphosis individually, this toxicity was magnified when larvae were exposed to combinations of both. Crude oil inhibited metamorphosis at 0.0824 mg l−1 THC and at 0.0325 mg l−1 THC when dispersed in 10% v/v (dispersant/oil). Management of petroleum-related risks to spawning corals should consider not only the occurrence of the annual coral spawning event, but also the subsequent 1–3-week period during which most larval metamorphosis and recruitment occur.


PLOS ONE | 2011

Induction of larval metamorphosis of the coral Acropora millepora by tetrabromopyrrole isolated from a Pseudoalteromonas bacterium.

Jan Tebben; Dianne M. Tapiolas; Cherie A. Motti; David Abrego; Andrew P. Negri; L. L. Blackall; Peter D. Steinberg; Tilmann Harder

The induction of larval attachment and metamorphosis of benthic marine invertebrates is widely considered to rely on habitat specific cues. While microbial biofilms on marine hard substrates have received considerable attention as specific signals for a wide and phylogenetically diverse array of marine invertebrates, the presumed chemical settlement signals produced by the bacteria have to date not been characterized. Here we isolated and fully characterized the first chemical signal from bacteria that induced larval metamorphosis of acroporid coral larvae (Acropora millepora). The metamorphic cue was identified as tetrabromopyrrole (TBP) in four bacterial Pseudoalteromonas strains among a culture library of 225 isolates obtained from the crustose coralline algae Neogoniolithon fosliei and Hydrolithon onkodes. Coral planulae transformed into fully developed polyps within 6 h, but only a small proportion of these polyps attached to the substratum. The biofilm cell density of the four bacterial strains had no influence on the ratio of attached vs. non-attached polyps. Larval bioassays with ethanolic extracts of the bacterial isolates, as well as synthetic TBP resulted in consistent responses of coral planulae to various doses of TBP. The lowest bacterial density of one of the Pseudoalteromonas strains which induced metamorphosis was 7,000 cells mm−2 in laboratory assays, which is on the order of 0.1 –1% of the total numbers of bacteria typically found on such surfaces. These results, in which an actual cue from bacteria has been characterized for the first time, contribute significantly towards understanding the complex process of acroporid coral larval settlement mediated through epibiotic microbial biofilms on crustose coralline algae.


Coral Reefs | 2007

Differing effects of thermal stress on coral fertilization and early embryogenesis in four Indo Pacific species

Andrew P. Negri; P. A. Marshall; Andrew Heyward

Coral reefs are expected to be severely impacted by rising seawater temperatures associated with climate change. The fertilization and early embryogenesis of four reef-building coral species representing three Indo-Pacific families were examined in a series of laboratory experiments where temperatures were increased up to 5–6°C at ambient. High levels of fertilization and normal embryogenesis were observed for Favites abdita, Favites chinensis and Mycedium elephantotus at temperatures to 32°C (+5°C) and embryos developed normally until the 5th cell cleavage. Acropora millepora was the only species to be affected by higher temperatures, exhibiting significantly reduced fertilization and a higher frequency of embryonic abnormalities at 32°C (+4°C), and fertilization ceased altogether at 34°C (+6°C). Early cell cleavage rates increased with temperature up to 32°C for all species.

Collaboration


Dive into the Andrew P. Negri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Florita Flores

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

Andrew Heyward

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sven Uthicke

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

Lyndon E. Llewellyn

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katharina E. Fabricius

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

Ross Jones

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge