Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew P Voorhees is active.

Publication


Featured researches published by Andrew P Voorhees.


Scientific Reports | 2017

Formalin Fixation and Cryosectioning Cause Only Minimal Changes in Shape or Size of Ocular Tissues

Huong Tran; Ning-Jiun Jan; Danielle Hu; Andrew P Voorhees; Joel S. Schuman; Matthew A. Smith; Gadi Wollstein; Ian A. Sigal

Advances in imaging have made it increasingly common to study soft tissues without first embedding them in plastic or paraffin and without using labels or stains. The process, however, usually still involves fixation and cryosectioning, which could deform the tissues. Our goal was to quantify the morphological changes of ocular tissues caused by formalin fixation and cryosectioning. From each of 6 porcine eyes, 4 regions were obtained: cornea, equatorial and posterior sclera, and posterior pole containing the optic nerve head. Samples were imaged using visible light microscopy fresh, 1-minute and 24-hours post-fixation, and post-cryosectioning. Effects were assessed by 14 parameters representing sample size and shape. Overall, formalin fixation and sectioning caused only minimal changes to the ocular tissues, with average percentage parameter differences of 0.1%, 1%, and 1.2% between fresh and post-fixing by 1 minute, 24 hours, and post-cryosectioning, respectively. Parameter changes were not directional, and were only weakly dependent on the duration of fixation and the region of the eye. These results demonstrate that formalin fixation and cryosectioning are good choices for studying ocular tissue morphology and structure, as they do not cause the large tissue shrinkage or distortions typically associated with other, more complicated, techniques.


Acta Biomaterialia | 2017

Effects of collagen microstructure and material properties on the deformation of the neural tissues of the lamina cribrosa

Andrew P Voorhees; Ning-Jiun Jan; Ian A. Sigal

It is widely considered that intraocular pressure (IOP)-induced deformation within the neural tissue pores of the lamina cribrosa (LC) contributes to neurodegeneration and glaucoma. Our goal was to study how the LC microstructure and mechanical properties determine the mechanical insult to the neural tissues within the pores of the LC. Polarized light microscopy was used to measure the collagen density and orientation in histology sections of three sheep optic nerve heads (ONH) at both mesoscale (4.4μm) and microscale (0.73μm) resolutions. Mesoscale fiber-aware FE models were first used to calculate ONH deformations at an IOP of 30mmHg. The results were then used as boundary conditions for microscale models of LC regions. Models predicted large insult to the LC neural tissues, with 95th percentile 1st principal strains ranging from 7 to 12%. Pores near the scleral boundary suffered significantly higher stretch compared to pores in more central regions (10.0±1.4% vs. 7.2±0.4%; p=0.014; mean±SD). Variations in material properties altered the minimum, median, and maximum levels of neural tissue insult but largely did not alter the patterns of pore-to-pore variation, suggesting these patterns are determined by the underlying structure and geometry of the LC beams and pores. To the best of our knowledge, this is the first computational model that reproduces the highly heterogeneous neural tissue strain fields observed experimentally. STATEMENT OF SIGNIFICANCE The loss of visual function associated with glaucoma has been attributed to sustained mechanical insult to the neural tissues of the lamina cribrosa due to elevated intraocular pressure. Our study is the first computational model built from specimen-specific tissue microstructure to consider the mechanics of the neural tissues of the lamina separately from the connective tissue. We found that the deformation of the neural tissue was much larger than that predicted by any recent microstructure-aware models of the lamina. These results are consistent with recent experimental data and the highest deformations were found in the region of the lamina where glaucomatous damage first occurs. This study provides new insight into the complex biomechanical environment within the lamina.


Experimental Eye Research | 2017

Whole-globe biomechanics using high-field MRI

Andrew P Voorhees; Leon C. Ho; Ning-Jiun Jan; Huong Tran; Yolandi van der Merwe; Kevin C. Chan; Ian A. Sigal

&NA; The eye is a complex structure composed of several interconnected tissues acting together, across the whole globe, to resist deformation due to intraocular pressure (IOP). However, most work in the ocular biomechanics field only examines the response to IOP over smaller regions of the eye. We used high‐field MRI to measure IOP induced ocular displacements and deformations over the whole globe. Seven sheep eyes were obtained from a local abattoir and imaged within 48 h using MRI at multiple levels of IOP. IOP was controlled with a gravity perfusion system and a cannula inserted into the anterior chamber. T2‐weighted imaging was performed to the eyes serially at 0 mmHg, 10 mmHg, 20 mmHg and 40 mmHg of IOP using a 9.4 T MRI scanner. Manual morphometry was conducted using 3D visualization software to quantify IOP‐induced effects at the globe scale (e.g. axial length and equatorial diameters) or optic nerve head scale (e.g. canal diameter, peripapillary sclera bowing). Measurement sensitivity analysis was conducted to determine measurement precision. High‐field MRI revealed an outward bowing of the posterior sclera and anterior bulging of the cornea due to IOP elevation. Increments in IOP from 10 to 40 mmHg caused measurable increases in axial length in 6 of 7 eyes of 7.9 ± 5.7% (mean ± SD). Changes in equatorial diameter were minimal, 0.4 ± 1.2% between 10 and 40 mmHg, and in all cases less than the measurement sensitivity. The effects were nonlinear, with larger deformations at normal IOPs (10–20 mmHg) than at elevated IOPs (20–40 mmHg). IOP also caused measurable increases in the nasal‐temporal scleral canal diameter of 13.4 ± 9.7% between 0 and 20 mmHg, but not in the superior‐inferior diameter. This study demonstrates that high‐field MRI can be used to visualize and measure simultaneously the effects of IOP over the whole globe, including the effects on axial length and equatorial diameter, posterior sclera displacement and bowing, and even changes in scleral canal diameter. The fact that the equatorial diameter did not change with IOP, in agreement with previous studies, indicates that a fixed boundary condition is a reasonable assumption for half globe inflation tests and computational models. Our results demonstrate the potential of high‐field MRI to contribute to understanding ocular biomechanics, and specifically of the effects of IOP in large animal models. HighlightsHigh‐field MRI was used to measure whole‐globe biomechanical deformations due to IOP.IOP increases caused detectable outward bowing of the posterior sclera and lamina cribrosa.IOP increases caused measurable non‐linear changes in axial length, globe perimeter and scleral canal diameter.Globe equatorial diameter did not change with increasing IOP.


Experimental Eye Research | 2016

What is a typical optic nerve head

Andrew P Voorhees; Jonathan Grimm; Richard A. Bilonick; L. Kagemann; Hiroshi Ishikawa; Joel S. Schuman; Gadi Wollstein; Ian A. Sigal

Whereas it is known that elevated intraocular pressure (IOP) increases the risk of glaucoma, it is not known why optic nerve heads (ONHs) vary so much in sensitivity to IOP and how this sensitivity depends on the characteristics of the ONH such as tissue mechanical properties and geometry. It is often assumed that ONHs with uncommon or atypical sensitivity to IOP, high sensitivity in normal tension glaucoma or high robustness in ocular hypertension, also have atypical ONH characteristics. Here we address two specific questions quantitatively: Do atypical ONH characteristics necessarily lead to atypical biomechanical responses to elevated IOP? And, do typical biomechanical responses necessarily come from ONHs with typical characteristics. We generated 100,000 ONH numerical models with randomly selected values for the characteristics, all falling within literature ranges of normal ONHs. The models were solved to predict their biomechanical response to an increase in IOP. We classified ONH characteristics and biomechanical responses into typical or atypical using a percentile-based threshold, and calculated the fraction of ONHs for which the answers to the two questions were true and/or false. We then studied the effects of varying the percentile threshold. We found that when we classified the extreme 5% of individual ONH characteristics or responses as atypical, only 28% of ONHs with an atypical characteristic had an atypical response. Further, almost 29% of typical responses came from ONHs with at least one atypical characteristic. Thus, the answer to both questions is no. This answer held irrespective of the threshold for classifying typical or atypical. Our results challenge the assumption that ONHs with atypical sensitivity to IOP must have atypical characteristics. This finding suggests that the traditional approach of identifying risk factors by comparing characteristics between patient groups (e.g. ocular hypertensive vs. primary open angle glaucoma) may not be a sound strategy.


Investigative Ophthalmology & Visual Science | 2017

Lamina Cribrosa Pore Shape and Size as Predictors of Neural Tissue Mechanical Insult

Andrew P Voorhees; Ning-Jiun Jan; Morgan E. Austin; John G. Flanagan; Jeremy M. Sivak; Richard A. Bilonick; Ian A. Sigal

Purpose The purpose of this study was to determine how the architecture of the lamina cribrosa (LC) microstructure, including the shape and size of the lamina pores, influences the IOP-induced deformation of the neural tissues within the LC pores using computational modeling. Methods We built seven specimen-specific finite element models of LC microstructure with distinct nonlinear anisotropic properties for LC beams and neural tissues based on histological sections from three sheep eyes. Changes in shape (aspect ratio and convexity) and size (area and perimeter length) due to IOP-induced hoop stress were calculated for 128 LC pores. Multivariate linear regression was used to determine if pore shape and size were correlated with the strain in the pores. We also compared the microstructure models to a homogenized model built following previous approaches. Results The LC microstructure resulted in focal tensile, compressive, and shear strains in the neural tissues of the LC that were not predicted by homogenized models. IOP-induced hoop stress caused pores to become larger and more convex; however, pore aspect ratio did not change consistently. Peak tensile strains within the pores were well predicted by a linear regression model considering the initial convexity (negative correlation, P < 0.001), aspect ratio (positive correlation, P < 0.01), and area (negative correlation, P < 0.01). Significant correlations were also found when considering the deformed shape and size of the LC pores. Conclusions The deformation of the LC neural tissues was largely dependent on the collagenous LC beams. Simple measures of LC pore shape and area provided good estimates of neural tissue biomechanical insult.


Investigative Ophthalmology & Visual Science | 2018

Cerebrospinal Fluid Pressure: Revisiting Factors Influencing Optic Nerve Head Biomechanics

Yi Hua; Andrew P Voorhees; Ian A. Sigal

Purpose To model the sensitivity of the optic nerve head (ONH) biomechanical environment to acute variations in IOP, cerebrospinal fluid pressure (CSFP), and central retinal artery blood pressure (BP). Methods We extended a previously published numerical model of the ONH to include 24 factors representing tissue anatomy and mechanical properties, all three pressures, and constraints on the optic nerve (CON). A total of 8340 models were studied to predict factor influences on 98 responses in a two-step process: a fractional factorial screening analysis to identify the 16 most influential factors, followed by a response surface methodology to predict factor effects in detail. Results The six most influential factors were, in order: IOP, CON, moduli of the sclera, lamina cribrosa (LC) and dura, and CSFP. IOP and CSFP affected different aspects of ONH biomechanics. The strongest influence of CSFP, more than twice that of IOP, was on the rotation of the peripapillary sclera. CSFP had similar influence on LC stretch and compression to moduli of sclera and LC. On some ONHs, CSFP caused large retrolamina deformations and subarachnoid expansion. CON had a strong influence on LC displacement. BP overall influence was 633 times smaller than that of IOP. Conclusions Models predict that IOP and CSFP are the top and sixth most influential factors on ONH biomechanics. Different IOP and CSFP effects suggest that translaminar pressure difference may not be a good parameter to predict biomechanics-related glaucomatous neuropathy. CON may drastically affect the responses relating to gross ONH geometry and should be determined experimentally.


Journal of Biophotonics | 2018

Polarized light microscopy for 3-dimensional mapping of collagen fiber architecture in ocular tissues

Bin Yang; Ning-Jiun Jan; Bryn Brazile; Andrew P Voorhees; Kira L. Lathrop; Ian A. Sigal

Collagen fibers play a central role in normal eye mechanics and pathology. In ocular tissues, collagen fibers exhibit a complex 3-dimensional (3D) fiber orientation, with both in-plane (IP) and out-of-plane (OP) orientations. Imaging techniques traditionally applied to the study of ocular tissues only quantify IP fiber orientation, providing little information on OP fiber orientation. Accurate description of the complex 3D fiber microstructures of the eye requires quantifying full 3D fiber orientation. Herein, we present 3dPLM, a technique based on polarized light microscopy developed to quantify both IP and OP collagen fiber orientations of ocular tissues. The performance of 3dPLM was examined by simulation and experimental verification and validation. The experiments demonstrated an excellent agreement between extracted and true 3D fiber orientation. Both IP and OP fiber orientations can be extracted from the sclera and the cornea, providing previously unavailable quantitative 3D measures and insight into the tissue microarchitecture. Together, the results demonstrate that 3dPLM is a powerful imaging technique for the analysis of ocular tissues.


Emerging Digital Micromirror Device Based Systems and Applications X | 2018

Structured polarized light microscopy (SPLM) for mapping collagen fiber orientation of ocular tissues

Ian A. Sigal; Bryn Brazile; Bin Yang; Ning-Jiun Jan; Andrew P Voorhees

Glaucoma is a disease characterized by progressive and irreversible vision loss leading to blindness. This vision loss is believed to be largely determined by the biomechanics of the optic nerve head region. Optic nerve head biomechanics, in turn, is determined by the properties of the constituent collagen. However, it is challenging to visualize and quantify collagen morphology and orientation in situ, and therefore often studies of the region collagen have used histological sections. Here we describe SPLM, a novel imaging technique that combines structured light illumination and polarized light microscopy (PLM) to enable collagen fiber visualization and fiber orientation mapping without requiring tissue sectioning. We developed a custom automated SPLM imaging system based on an upright microscope and a digital micromirror device (DMD) projector. The high spatial frequency patterns were used to achieve effective background suppression. Enhanced scattering sensitivity with SPLM resulted in images with highly improved visibility of collagen structures, even of tissues covered by pigment. SPLM produced improved fiber orientation maps from superficial layers compared to depth-averaged orientation from regular PLM. SPLM imaging provides valuable information of collagen fiber morphology and orientation in situ thus strengthening the study of ocular collagen fiber biomechanics and glaucoma.


Optical Elastography and Tissue Biomechanics V | 2018

Measuring in-vivo and in-situ ex-vivo the 3D deformation of the lamina cribrosa microstructure under elevated intraocular pressure

Ian A. Sigal; Junchao Wei; Bin Yang; Andrew P Voorhees; Huong Tran; Bo Wang; Joel S. Schuman; Gadi Wollstein; Matthew A. Smith; Bryn Brazile

Elevated intraocular pressure (IOP) deforms the lamina cribrosa (LC), a structure within the optic nerve head (ONH) in the back of the eye. Evidence suggests that these deformations trigger events that eventually cause irreversible blindness, and have therefore been studied in-vivo using optical coherence tomography (OCT), and ex-vivo using OCT and a diversity of techniques. To the best of our knowledge, there have been no in-situ ex-vivo studies of LC mechanics. Our goal was two-fold: to introduce a technique for measuring 3D LC deformations from OCT, and to determine whether deformations of the LC induced by elevated IOP differ between in-vivo and in-situ ex-vivo conditions. A healthy adult rhesus macaque monkey was anesthetized and IOP was controlled by inserting a 27- gauge needle into the anterior chamber of the eye. Spectral domain OCT was used to obtain volumetric scans of the ONH at normal and elevated IOPs. To improve the visibility of the LC microstructure the scans were first processed using a novel denoising technique. Zero-normalized cross-correlation was used to find paired corresponding locations between images. For each location pair, the components of the 3D strain tensor were determined using non-rigid image registration. A mild IOP elevation from 10 to 15mmHg caused LC effective strains as large as 3%, and about 50% larger in-vivo than in-situ ex-vivo. The deformations were highly heterogeneous, with substantial 3D components, suggesting that accurate measurement of LC microstructure deformation requires high-resolution volumes. This technique will help improve understanding of LC biomechanics and how IOP contributes to glaucoma.


Investigative Ophthalmology & Visual Science | 2018

Seeing the Hidden Lamina: Effects of Exsanguination on the Optic Nerve Head

Huong Tran; Jacob Wallace; Ziyi Zhu; Katie A. Lucy; Andrew P Voorhees; Samantha Schmitt; Richard A. Bilonick; Joel S. Schuman; Matthew A. Smith; Gadi Wollstein; Ian A. Sigal

Purpose To introduce an experimental approach for direct comparison of the primate optic nerve head (ONH) before and after death by exsanguination. Method The ONHs of four eyes from three monkeys were imaged with spectral-domain optical coherence tomography (OCT) before and after exsanguination under controlled IOP. ONH structures, including the Bruch membrane (BM), BM opening, inner limiting membrane (ILM), and anterior lamina cribrosa (ALC) were delineated on 18 virtual radial sections per OCT scan. Thirteen parameters were analyzed: scleral canal at BM opening (area, planarity, and aspect ratio), ILM depth, BM depth; ALC (depth, shape index, and curvedness), and ALC visibility (globally, superior, inferior, nasal, and temporal quadrants). Results All four ALC quadrants had a statistically significant improvement in visibility after exsanguination (overall P < 0.001). ALC visibility increased by 35% globally and by 36%, 37%, 14%, and 4% in the superior, inferior, nasal, and temporal quadrants, respectively. ALC increased 4.1%, 1.9%, and 0.1% in curvedness, shape index, and depth, respectively. Scleral canals increased 7.2%, 25.2%, and 1.1% in area, planarity, and aspect ratio, respectively. ILM and BM depths averaged −7.5% and −55.2% decreases in depth, respectively. Most, but not all, changes were beyond the repeatability range. Conclusions Exsanguination allows for improved lamina characterization, especially in regions typically blocked by shadowing in OCT. The results also demonstrate changes in ONH morphology due to the loss of blood pressure. Future research will be needed to determine whether there are differences in ONH biomechanics before and after exsanguination and what those differences would imply.

Collaboration


Dive into the Andrew P Voorhees's collaboration.

Top Co-Authors

Avatar

Ian A. Sigal

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Ning-Jiun Jan

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Huong Tran

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Yang

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Wang

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge