Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew R. Cook is active.

Publication


Featured researches published by Andrew R. Cook.


Review of Scientific Instruments | 2004

The LEAF picosecond pulse radiolysis facility at Brookhaven National Laboratory

James F. Wishart; Andrew R. Cook; John R. Miller

The BNL Laser-Electron Accelerator Facility (LEAF) uses a laser-pulsed photocathode, radio-frequency electron gun to generate ⩾7 ps pulses of 8.7 MeV electrons for pulse radiolysis experiments. The compact and operationally simple accelerator system includes synchronized laser pulses that can be used to probe or excite the electron-pulsed samples to examine the dynamics and reactivity of chemical species on the picosecond time scale.


Journal of the American Chemical Society | 2008

Electron and hole transport to trap groups at the ends of conjugated polyfluorenes.

Sadayuki Asaoka; Norihiko Takeda; Tomokazu Iyoda; Andrew R. Cook; John R. Miller

Polyfluorenes (pF) were synthesized having anthraquinone (AQ) or naphtylimide (NI) end caps that trap electrons or di- p-tolylaminophenyl (APT2) caps that trap holes. The average lengths of the pF chains in these molecules varied from 7 to 30 nm. End capping was found not to be complete in these molecules so that some were without caps. Electrons or holes were injected into these polymers in solution by pulse radiolysis. Following attachment, the charges migrated to the end cap traps in times near 2 ns in pF12AQ or 5 ns in pF35NI. From these observations, electron mobilities for transport along single chains to the end caps in THF solution were determined to be smaller by a factor of 100 than those observed by microwave conductivity. Despite this, the mobilities were sufficiently large to provide encouragement to the use of such single chains in solar photovoltaics. Most charges were observed to transport over substantial distances in these polymers, but 23, 18, and 37% of the charges attached to pFNI, pFAQ, and pFAPT2, respectively, were trapped in the pF chains and decayed by slower bimolecular reactions. For pFAQ and pFAPT2, all of the trapped charges were accounted for by estimates of the fraction of molecules having no end cap traps. For pF35NI, 23% of the attached electrons were found to be trapped in the chains, but only 4% of chains were expected to have no end caps. This could indicate some trapping by kinks or other defects but may just reflect uncertainties in the capping of this long polymer. When the charges reach the trap groups, their spectra have no features of pF(*-) or pF(*+), nor do the principal bands of the trapped ions resemble spectra of the radical ions of isolated trap molecules. The optical absorption spectra are rather dominated by new bands identified as charge-transfer transitions, which probably reinject electrons or holes into the pF chains. The energies of those bands correlate well with measured redox potentials.


Journal of the American Chemical Society | 2011

Negative polaron and triplet exciton diffusion in organometallic "molecular wires".

Julia M. Keller; Ksenija D. Glusac; Evgeny O. Danilov; Sean P. Mcilroy; Paiboon Sreearuothai; Andrew R. Cook; Hui Jiang; John R. Miller; Kirk S. Schanze

The dynamics of negative polaron and triplet exciton transport within a series of monodisperse platinum (Pt) acetylide oligomers is reported. The oligomers consist of Pt-acetylide repeats, [PtL(2)-C≡C-Ph-C≡C-](n) (where L = PBu(3) and Ph = 1,4-phenylene, n = 2, 3, 6, and 10), capped with naphthalene diimide (NDI) end groups. The Pt-acetylide segments are electro- and photoactive, and they serve as conduits for transport of electrons (negative polaron) and triplet excitons. The NDI end groups are relatively strong acceptors, serving as traps for the carriers. Negative polaron transport is studied by using pulse radiolysis/transient absorption at the Brookhaven National Laboratory Laser-Electron Accelerator Facility (LEAF). Electrons are rapidly attached to the oligomers, with some fraction initially residing upon the Pt-acetylide chains. The dynamics of transport are resolved by monitoring the spectral changes associated with transfer of electrons from the chain to the NDI end group. Triplet exciton transport is studied by femtosecond-picosecond transient absorption spectroscopy. Near-UV excitation leads to rapid production of triplet excitons localized on the Pt-acetylide chains. The excitons transport to the chain ends, where they are annihilated by charge separation with the NDI end group. The dynamics of triplet transport are resolved by transient absorption spectroscopy, taking advantage of the changes in spectra associated with decay of the triplet exciton and rise of the charge-separated state. The results indicate that negative polarons and excitons are transported rapidly, on average moving distances of ~3 nm in less than 200 ps. Analysis of the dynamics suggests diffusive transport by a site-to-site hopping mechanism with hopping times of ~27 ps for triplets and <10 ps for electrons.


Journal of the American Chemical Society | 2012

Polarons, bipolarons, and side-by-side polarons in reduction of oligofluorenes.

Lori Zaikowski; Parmeet Kaur; Claudia Gelfond; Elicia Selvaggio; Sadayuki Asaoka; Qin Wu; Hung-Cheng Chen; Norihiko Takeda; Andrew R. Cook; Alex Yang; John Rosanelli; John R. Miller

The nature of charge carriers in conjugated polymers was elucidated through optical spectroscopy following single- and multielectron reduction of 2,7-(9,9-dihexylfluorene) oligomers, F(n), n = 1-10, yielding spectra with the two bands typical of polarons upon single reduction. For short oligomers addition of a second electron gave a single band demonstrating the classic polaron-bipolaron transition. However, for long oligomers double reductions yielded spectra with two bands, better described as two polarons, possibly residing side-by-side in the F(n) chains. The singly reduced anions do not appear to delocalize over the entire length of the longer conjugated systems; instead they are polarons occupying approximately four fluorene repeat units. The polarons of F(3) and F(4) display sharp absorption bands, but for longer oligomers the bands broaden, possibly due to fluctuations of the lengths of these unconfined polarons. DFT calculations with long-range-corrected functionals were fully consistent with the experiments describing polarons in anions, bipolarons in dianions of short oligomers, and side-by-side polarons in dianions of long oligomers, while results from standard functionals were not compatible with the experimental results. The computations found F(10)(2-), for example, to be an open-shell singlet ( ≈ 1), with electrons in two side-by-side orbitals, while dianions of shorter oligomers experienced a gradual transition to bipolarons with states of intermediate character at intermediate lengths. The energies and extinction coefficients of each anionic species were measured by ultraviolet-visible-near-infrared absorption spectroscopy with chemical reduction and pulse radiolysis. Reduction potentials determined from equilibria mirrored oxidation potentials reported by Chi and Wegner. Anions of oligomers four or more units in length contained vestigial neutral (VN) absorption bands that arise from neutral parts of the chain. Energies of the VN bands correspond to those of oligomers shorter by four units.


Faraday Discussions | 2012

Electron solvation dynamics and reactivity in ionic liquids observed by picosecond radiolysis techniques

James F. Wishart; Alison M. Funston; Tomasz Szreder; Andrew R. Cook; Masao Gohdo

On time scales of a nanosecond or less, radiolytically-generated excess electrons in ionic liquids undergo solvation processes and reactions that determine all subsequent chemistry and the accumulation of radiolytic damage. Using picosecond pulse radiolysis detection methods, we observed and quantified the solvation response of the electron in 1-methyl-1-butyl-pyrrolidinium bis (trifluoromethylsulfonyl)amide and used it to understand electron scavenging by a typical solute, duroquinone.


Journal of Physical Chemistry B | 2013

Radiation Stability of Cations in Ionic Liquids. 2. Improved Radiation Resistance through Charge Delocalization in 1-Benzylpyridinium

Ilya A. Shkrob; Timothy W. Marin; Jasmine L. Hatcher; Andrew R. Cook; Tomasz Szreder; James F. Wishart

Hydrophobic room-temperature ionic liquids (ILs) hold promise as replacements for molecular diluents for processing of used nuclear fuel as well as for the development of alternative separations processes, provided that the solvent can be made resistant to ionizing radiation. We demonstrate that 1-benzylpyridinium cations are uniquely suited as radiation resistant cations due to the occurrence of charge delocalization in both their reduced and oxidized forms in the ILs. It is suggested that the excess electron and hole in the latter ILs are stabilized through the formation of π-electron sandwich dimers that are analogous to the well-known dimer radical cations of aromatic molecules. This charge delocalization dramatically reduces the yield of fragmentation by deprotonation and the loss of benzyl arms, thereby providing a synthetic path to radiation resistant ILs that are suitable for nuclear fuel processing.


Applied Spectroscopy | 2010

Application of external-cavity quantum cascade infrared lasers to nanosecond time-resolved infrared spectroscopy of condensed-phase samples following pulse radiolysis.

David C. Grills; Andrew R. Cook; Etsuko Fujita; Michael W. George; Jack M. Preses; James F. Wishart

Pulse radiolysis, utilizing short pulses of high-energy electrons from accelerators, is a powerful method for rapidly generating reduced or oxidized species and other free radicals in solution. Combined with fast time-resolved spectroscopic detection (typically in the ultraviolet/visible/near-infrared), it is invaluable for monitoring the reactivity of species subjected to radiolysis on timescales ranging from picoseconds to seconds. However, it is often difficult to identify the transient intermediates definitively due to a lack of structural information in the spectral bands. Time-resolved vibrational spectroscopy offers the structural specificity necessary for mechanistic investigations but has received only limited application in pulse radiolysis experiments. For example, time-resolved infrared (TRIR) spectroscopy has only been applied to a handful of gas-phase studies, limited mainly by several technical challenges. We have exploited recent developments in commercial external-cavity quantum cascade laser (EC-QCL) technology to construct a nanosecond TRIR apparatus that has allowed, for the first time, TRIR spectra to be recorded following pulse radiolysis of condensed-phase samples. Near single-shot sensitivity of ΔOD <1 × 10−3 has been achieved, with a response time of <20 ns. Using two continuous-wave EC-QCLs, the current apparatus covers a probe region from 1890–2084 cm−1, and TRIR spectra are acquired on a point-by-point basis by recording transient absorption decay traces at specific IR wavelengths and combining these to generate spectral time slices. The utility of the apparatus has been demonstrated by monitoring the formation and decay of the one-electron reduced form of the CO2 reduction catalyst, [Rei(bpy)(CO)3(CH3CN)]+, in acetonitrile with nanosecond time resolution following pulse radiolysis. Characteristic red-shifting of the ν(CO) IR bands confirmed that one-electron reduction of the complex took place. The availability of TRIR detection with high sensitivity opens up a wide range of mechanistic pulse radiolysis investigations that were previously difficult or impossible to perform with transient UV/visible detection.


Review of Scientific Instruments | 2009

Optical fiber-based single-shot picosecond transient absorption spectroscopy

Andrew R. Cook; Yuzhen Shen

A new type of single-shot transient absorption apparatus is described based on a bundle of optical fibers. The bundle contains 100 fibers of different lengths, each successively giving approximately 15 ps longer optical delay. Data are collected by imaging light from the exit of the bundle into a sample where it is overlapped with an electron pulse or laser excitation pulse, followed by imaging onto a charge coupled device (CCD) detector where the intensity of light from each fiber is measured simultaneously. Application to both ultrafast pump-probe spectroscopy and pulse radiolysis is demonstrated. For pulse radiolysis, the prototype bundle provides the ability to collect data with a time resolution limited only by the electron pulse width of 7-10 ps, over a total single-shot time window of approximately 1.5 ns. Tunable probe light is obtained from a titanium-sapphire laser and an optical parametric amplifier. Corrections are made to remove the fiber-to-fiber variations in signal magnitude due to the spatial overlap of the electron beam and probe image. High quality data can be collected over most of the sensitivity range of the CCD camera detectors. The single-shot instrument is valuable for measurement of samples that are only available in very limited quantities, are too viscous to flow, or are rigid. It is therefore excellent in applications, such as picosecond pulse radiolysis, where the thousands of pulses per kinetic trace typical in classical pump-probe experiments can damage the sample before useful results could be obtained.


Solvent Extraction and Ion Exchange | 2015

A Comparison of the γ-Radiolysis of TODGA and T(EH)DGA Using UHPLC-ESI-MS Analysis

Christopher A. Zarzana; Gary S. Groenewold; Bruce J. Mincher; Stephen P. Mezyk; Andreas Wilden; Holger Schmidt; Giuseppe Modolo; James F. Wishart; Andrew R. Cook

Solutions of TODGA and T(EH)DGA in n-dodecane were subjected to γ-irradiation in the presence and absence of an aqueous nitric acid phase and analyzed using UHPLC-ESI-MS to determine the rates of radiolytic decay of the two extractants, as well as to identify radiolysis products. The DGA concentrations decreased exponentially with increasing dose, and the measured degradation rate constants were uninfluenced by the presence or absence of an acidic aqueous phase, or by chemical variations in the alkyl side-chains. The DGA degradation was attributed to reactions of the dodecane radical cation, whose kinetics were measured for TODGA using picosecond electron pulse radiolysis to be k2 = (9.72 ± 1.10) × 109 M−1 s−1. The identified radiolysis products suggest that the bonds most vulnerable to radiolytic attack are those in the diglycolamide center of these molecules and not on the side-chains.


Journal of Physical Chemistry A | 2013

Electron transfer by excited benzoquinone anions: slow rates for two-electron transitions.

Matibur Zamadar; Andrew R. Cook; Anna Lewandowska-Andralojc; Richard A. Holroyd; Yan Jiang; Jin Bikalis; John R. Miller

Electron transfer (ET) rate constants from the lowest excited state of the radical anion of benzoquinone, BQ(-•)*, were measured in THF solution. Rate constants for bimolecular electron transfer reactions typically reach the diffusion-controlled limit when the free-energy change, ΔG°, reaches -0.3 eV. The rate constants for ET from BQ(-•)* are one-to-two decades smaller at this energy and do not reach the diffusion-controlled limit until -ΔG° is 1.5-2.0 eV. The rates are so slow probably because a second electron must also undergo a transition to make use of the energy of the excited state. Similarly, ET, from solvated electrons to neutral BQ to form the lowest excited state, is slow, while fast ET is observed at a higher excited state, which can be populated in a transition involving only one electron. A simple picture based on perturbation theory can roughly account for the control of electron transfer by the need for transition of a second electron. The picture also explains how extra driving force (-ΔG°) can restore fast rates of electron transfer.

Collaboration


Dive into the Andrew R. Cook's collaboration.

Top Co-Authors

Avatar

John R. Miller

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James F. Wishart

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Matthew Bird

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Paiboon Sreearunothai

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gina Mauro

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Hung Cheng Chen

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hung-Cheng Chen

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jack M. Preses

Brookhaven National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge