Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew R. Frey is active.

Publication


Featured researches published by Andrew R. Frey.


Physical Review D | 2003

Fall of stringy de Sitter spacetime

Andrew R. Frey; Matthew Lippert; Brook Williams

Kachru, Kallosh, Linde,&Trivedi recently constructed a four-dimensional de Sitter compactification of IIB string theory, which they showed to be metastable in agreement with general arguments about de Sitter spacetimes in quantum gravity. In this paper, we describe how discrete flux choices lead to a closely-spaced set of vacua and explore various decay channels. We find that in many situations NS5-brane meditated decays which exchange NSNS 3-form flux for D3-branes are comparatively very fast.


Physical Review D | 2006

Stringy effects during inflation and reheating

Andrew R. Frey; Anupam Mazumdar; Robert C. Myers

We consider inflationary cosmology in the context of string compactifications with multiple throats. In scenarios where the warping differs significantly between throats, string and Kaluza-Klein physics can generate potentially observable corrections to the cosmology of inflation and reheating. First we demonstrate that a very low string scale in the ground state compactification is incompatible with a high Hubble scale during inflation, and we propose that the compactification geometry is altered during inflation. In this configuration, the lowest scale is just above the Hubble scale, which is compatible with the effective field theory but still leads to potentially observable cosmic microwave background corrections. Also in the appropriate region of parameter space, we find that reheating leads to a phase of long open strings in the standard model sector (before the usual radiation-dominated phase). We sketch the cosmology of the long string phase and we discuss possible observational consequences.


Physical Review D | 2004

Interaction rates in string gas cosmology

Rebecca J. Danos; Andrew R. Frey; Anupam Mazumdar

We study string interaction rates in the Brandenberger-Vafa scenario, the very early universe cosmology of a gas of strings. This cosmology starts with the assumption that all spatial dimensions are compact and initially have string scale radii; some dimensions grow due to some thermal or quantum fluctuation which acts as an initial expansion velocity. Based on simple arguments from the low-energy equations of motion and string thermodynamics, we demonstrate that the interaction rates of strings are negligible, so the common assumption of thermal equilibrium cannot apply. We also present a new analysis of the cosmological evolution of strings on compact manifolds of large radius. Then we discuss modifications that should be considered to the usual Brandenberger-Vafa scenario. To confirm our simple arguments, we give a numerical calculation of the annihilation rate of winding strings. In calculating the rate, we also show that the quantum mechanics of strings in small spaces is important.


Journal of High Energy Physics | 2006

Warped spectroscopy: localization of frozen bulk modes

Andrew R. Frey; Anshuman Maharana

We study the 10D equation of motion of dilaton-axion fluctuations in type IIB string compactifications with three-form flux, taking warping into account. Using simplified models with physics comparable to actual compactifications, we argue that the lightest mode localizes in long warped throats and takes a mass of order the warped string scale. Also, the Gukov-Vafa-Witten superpotential is valid for the lightest mass mode; however, the mass is similar to the Kaluza-Klein scale, so the dilaton-axion should be integrated out of the effective theory in this long throat regime (leaving a constant superpotential). On the other hand, there is a large hierarchy between flux-induced and KK mass scales for moderate or weak warping. This hierarchy agrees with arguments given for trivial warping. Along the way, we also estimate the effect of the other 10D supergravity equations of motion on the dilaton-axion fluctuation, since these equations act as constraints. We argue that they give negligible corrections to the simplest approximation.


Journal of High Energy Physics | 2004

Notes on SU(3) structures in type IIB supergravity

Andrew R. Frey

We study solutions of type IIB supergravity with an SU(3) structure group and four dimensional Poincare invariance and present relations among the bosonic fields which follow from the supersymmetry variations. We make explicit some results which also follow from the more general case of an SU(2) structure and give some short comments applicable to general supersymmetric solutions. We also provide simplified relations appropriate for duals of gauge theory renormalization group flows, and use these to derive the supergravity solution for a bound state of (p, q)5-branes and D3-branes.


Physical Review D | 2003

Type IIB solutions with interpolating supersymmetries

Andrew R. Frey; Mariana Graña

We study type IIB supergravity solutions with four supersymmetries that interpolate between two types widely considered in the literature: the dual of Becker and Beckers compactifications of M-theory to 3 dimensions and the dual of Stromingers torsion compactifications of heterotic theory to 4 dimensions. We find that for all intermediate solutions the internal manifold is not Calabi-Yau, but has SU(3) holonomy in a connection with a torsion given by the 3-form flux. All 3-form and 5-form fluxes, as well as the dilaton, depend on one function appearing in the supersymmetry spinor, which satisfies a nonlinear differential equation. We check that the fields corresponding to a flat bound state of D3/D5-branes lie in our class of solutions. The relations among supergravity fields that we derive should be useful in studying new gravity duals of gauge theories, as well as possibly compactifications.


Physical Review D | 2003

3-form induced potentials, dilaton stabilization, and running moduli

Andrew R. Frey; Anupam Mazumdar

We study the potential induced by imaginary self-dual 3-forms in compactifications of string theory and the cosmological evolution associated with it. The potential contains exponentials of the volume moduli of the compactification, and we demonstrate that the exponential form of the potential leads to a power law for the scale factor of the universe. This power law does not support accelerated expansion. We explain this result in terms of supersymmetry and comment on corrections to the potential that could lead to inflation or quintessence.


Physical Review D | 2012

Composite magnetic dark matter and the 130 GeV line

James M. Cline; Andrew R. Frey; Guy D. Moore

We propose an economical model to explain the apparent 130 GeV gamma ray peak, found in the Fermi/LAT data, in terms of dark matter annihilation through a dipole moment interaction. The annihilating dark matter particles represent a subdominant component, with mass density 7-17% of the total DM density; and they only annihilate into gamma gamma, gamma Z, and ZZ, through a magnetic (or electric) dipole moment. Annihilation into other standard model particles is suppressed, due to a mass splitting in the magnetic dipole case, or to p-wave scattering in the electric dipole case. In either case, the observed signal requires a dipole moment of strength mu ~ 2/TeV. We argue that composite models are the preferred means of generating such a large dipole moment, and that the magnetic case is more natural than the electric one. We present a simple model involving a scalar and fermionic techniquark of a confining SU(2) gauge symmetry. We point out some generic challenges for getting such a model to work. The new physics leading to a sufficiently large dipole moment is below the TeV scale, indicating that the magnetic moment is not a valid effective operator for LHC physics, and that production of the strongly interacting constituents, followed by techni-hadronization, is a more likely signature than monophoton events. In particular, 4-photon events from the decays of bound state pairs are predicted.


Journal of Cosmology and Astroparticle Physics | 2014

Nonabelian dark matter models for 3.5 keV X-rays

James M. Cline; Andrew R. Frey

A recent analysis of XXM-Newton data reveals the possible presence of an X-ray line at approximately 3.55 keV, which is not readily explained by known atomic transitions. Numerous models of eV-scale decaying dark matter have been proposed to explain this signal. Here we explore models of multicomponent nonabelian dark matter with typical mass ~ 1-10 GeV (higher values being allowed in some models) and eV-scale splittings that arise naturally from the breaking of the nonabelian gauge symmetry. Kinetic mixing between the photon and the hidden sector gauge bosons can occur through a dimension-5 or 6 operator. Radiative decays of the excited states proceed through transition magnetic moments that appear at one loop. The decaying excited states can either be primordial or else produced by upscattering of the lighter dark matter states. These models are significantly constrained by direct dark matter searches or cosmic microwave background distortions, and are potentially testable in fixed target experiments that search for hidden photons. We note that the upscattering mechanism could be distinguished from decays in future observations if sources with different dark matter velocity dispersions seem to require different values of the scattering cross section to match the observed line strengths.


Physical Review D | 2011

Minimal hidden sector models for CoGeNT/DAMA events

James M. Cline; Andrew R. Frey

Motivated by recent attempts to reconcile hints of direct dark matter detection by the CoGeNT and DAMA experiments, we construct simple particle physics models that can accommodate the constraints. We point out challenges for building reasonable models and identify the most promising scenarios for getting isospin violation and inelasticity, as indicated by some phenomenological studies. If inelastic scattering is demanded, we need two new light gauge bosons, one of which kinetically mixes with the standard model hypercharge and has mass <2 GeV, and another which couples to baryon number and has mass 6.8{+-}(0.1/0.2) GeV. Their interference gives the desired amount of isospin violation. The dark matter is nearly Dirac, but with small Majorana masses induced by spontaneous symmetry breaking, so that the gauge boson couplings become exactly off-diagonal in the mass basis, and the small mass splitting needed for inelasticity is simultaneously produced. If only elastic scattering is demanded, then an alternative model, with interference between the kinetically mixed gauge boson and a hidden sector scalar Higgs, is adequate to give the required isospin violation. In both cases, the light kinetically mixed gauge boson is in the range of interest for currently running fixed target experiments.

Collaboration


Dive into the Andrew R. Frey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge