Andrew R. J. Curson
University of East Anglia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrew R. J. Curson.
Nature Reviews Microbiology | 2011
Andrew R. J. Curson; Jonathan D. Todd; Matthew J. Sullivan; Andrew W. B. Johnston
The compatible solute dimethylsulphoniopropionate (DMSP) has important roles in marine environments. It is an anti-stress compound made by many single-celled plankton, some seaweeds and a few land plants that live by the shore. Furthermore, in the oceans it is a major source of carbon and sulphur for marine bacteria that break it down to products such as dimethyl sulphide, which are important in their own right and have wide-ranging effects, from altering animal behaviour to seeding cloud formation. In this Review, we describe how recent genetic and genomic work on the ways in which several different bacteria, and some fungi, catabolize DMSP has provided new and surprising insights into the mechanisms, regulation and possible evolution of DMSP catabolism in microorganisms.
Environmental Microbiology | 2009
Jonathan D. Todd; Andrew R. J. Curson; Chris L. Dupont; P. Nicholson; Andrew W. B. Johnston
The marine alphaproteobacterium Roseovarius nubinhibens ISM can produce the gas dimethyl sulfide (DMS) from dimethylsulfoniopropionate (DMSP), a widespread secondary metabolite that occurs in many phytoplankton. Roseovarius possesses a novel gene, termed dddP, which when cloned, confers on Escherichia coli the ability to produce DMS. The DddP polypeptide is in the large family of M24 metallopeptidases and is wholly different from two other enzymes, DddD and DddL, which were previously shown to generate DMS from dimethylsulfoniopropionate. Close homologues of DddP occur in other alphaproteobacteria and more surprisingly, in some Ascomycete fungi. These were the biotechnologically important Aspergillus oryzae and the plant pathogen, Fusarium graminearum. The dddP gene is abundant in the bacterial metagenomic sequences in the Global Ocean Sampling Expedition. Thus, dddP has several novel features and is widely dispersed, both taxonomically and geographically.
Biometals | 2007
Andrew W. B. Johnston; Jonathan D. Todd; Andrew R. J. Curson; Sun Lei; Nefeli Nikolaidou-Katsaridou; Mikhail S. Gelfand; Dmitry A. Rodionov
The alpha-proteobacteria include several important genera, including the symbiotic N2-fixing “rhizobia” the plant pathogen Agrobacterium, the mammalian pathogens Brucella, Bartonella as well as many others that are of environmental or other interest—including Rhodobacter, Caulobacter and the hugely abundant marine genus Pelagibacter. Only a few species—mainly different members of the rhizobia—have been analyzed directly for their ability to use and to respond to iron. These studies, however, have shown that at least some of the “alphas” differ fundamentally in the ways in which they regulate their genes in response to Fe availability. In this paper, we build on our own work on Rhizobium leguminosarum (the symbiont of peas, beans and clovers) and on Bradyrhizobium japonicum, which nodulates soybeans and which has been studied in Buffalo and Zürich. In the former species, the predominant Fe-responsive regulator is not Fur, but RirA, a member of the Rrf2 protein family and which likely has an FeS cluster cofactor. In addition, there are several R. leguminosarum genes that are expressed at higher levels in Fe-replete conditions and at least some of these are regulated by Irr, a member of the Fur superfamily and which has the unusual property of being degraded by the presence of heme. In silico analyses of the genome sequences of other bacteria indicate that Irr occurs in all members of the Rhizobiales and the Rhodobacterales and that RirA is found in all but one branch of these two lineages, the exception being the clade that includes B. japonicum. Nearly all the Rhizobiales and the Rhodobacterales contain a gene whose product resembles bona fide Fur. However, direct genetic studies show that in most of the Rhizobiales and in the Rhodobacterales it is a “Mur” (a manganese responsive repressor of a small number of genes involved in Mn uptake) or, in Bradyrhizobium, it recognizes the operator sequences of only a few genes that are involved in Fe metabolism. We propose that the Rhizobiales and the Rhodobacterales have relegated Fur to a far more minor role than in (say) E. coli and that they employ Irr and, in the Rhizobiales, RirA as their global Fe-responsive transcriptional regulators. In contrast to the direct interaction between Fe2+ and conventional Fur, we suggest that these bacteria sense Fe more indirectly as functions of the intracellular concentrations of FeS clusters and of heme. Thus, their “iron-omes” may be more accurately linked to the real-time needs for the metal and not just to its absolute concentration in the environment.
Environmental Microbiology | 2011
Jonathan D. Todd; Andrew R. J. Curson; Mark Kirkwood; Matthew J. Sullivan; Robert T. Green; Andrew W. B. Johnston
Ruegeria (previously Silicibacter) pomeroyi DSS-3, a marine roseobacter, can catabolize dimethylsulfoniopropionate (DMSP), a compatible solute that is made in large amounts by marine plankton and algae. This strain was known to demethylate DMSP via a demethylase, encoded by the dmdA gene, and it can also cleave DMSP, releasing the environmentally important volatile dimethyl sulfide (DMS) in the process. We found that this strain has two different genes, dddP and dddQ, which encode enzymes that cleave DMSP, generating DMS plus acrylate. DddP had earlier been found in other roseobacters and is a member of the M24 family of peptidases. The newly discovered DddQ polypeptide contains a predicted cupin metal-binding pocket, but has no other similarity to any other polypeptide with known function. DddP(-) and DddQ(-) mutants each produced DMS at significantly reduced levels compared with wild-type R. pomeroyi DSS-3, and transcription of the corresponding ddd genes was enhanced when cells were pre-grown with DMSP. Ruegeria pomeroyi DSS-3 also has a gene product that is homologous to DddD, a previously identified enzyme that cleaves DMSP, but which forms DMS plus 3-OH-propionate as the initial catabolites. However, mutations in this dddD-like gene did not affect DMS production, and it was not transcribed under our conditions. Another roseobacter strain, Roseovarius nubinhibens ISM, also contains dddP and has two functional copies of dddQ, encoded by adjacent genes. Judged by their frequencies in the Global Ocean Sampling metagenomic databases, DddP and DddQ are relatively abundant among marine bacteria compared with the previously identified DddL and DddD enzymes.
Environmental Microbiology | 2010
Jonathan D. Todd; Andrew R. J. Curson; Nefeli Nikolaidou-Katsaraidou; Charles A. Brearley; Nicholas J. Watmough; Yohan Chan; Philip C. Bulman Page; Lei Sun; Andrew W. B. Johnston
A bacterium in the genus Halomonas that grew on dimethylsulfoniopropionate (DMSP) or acrylate as sole carbon sources and that liberated the climate-changing gas dimethyl sulfide in media containing DMSP was obtained from the phylloplane of the macroalga Ulva. We identified a cluster that contains genes specifically involved in DMSP catabolism (dddD, dddT) or in degrading acrylate (acuN, acuK) or that are required to break down both substrates (dddC, dddA). Using NMR and HPLC analyses to trace 13C- or 14C-labelled acrylate and DMSP in strains of Escherichia coli with various combinations of cloned ddd and/or acu genes, we deduced that DMSP is imported by the BCCT-type transporter DddT, then converted by DddD to 3-OH-propionate (3HP), liberating dimethyl sulfide in the process. As DddD is a predicted acyl CoA transferase, there may be an earlier, unidentified catabolite of DMSP. Acrylate is also converted to 3HP, via a CoA transferase (AcuN) and a hydratase (AcuK). The 3HP is predicted to be catabolized by an alcohol dehydrogenase, DddA, to malonate semialdehyde, thence by an aldehyde dehydrogenase, DddC, to acyl CoA plus CO2. The regulation of the ddd and acu genes is unusual, as a catabolite, 3HP, was a co-inducer of their transcription. This first description of genes involved in acrylate catabolism in any organism shows that the relationship between the catabolic pathways of acrylate and DMSP differs from that which had been suggested in other bacteria.
The ISME Journal | 2011
Andrew R. J. Curson; Matthew J. Sullivan; Jonathan D. Todd; Andrew W. B. Johnston
The abundant compatible solute dimethylsulfoniopropionate (DMSP) is made by many marine algae. Different marine bacteria catabolise DMSP by various mechanisms, some of which liberate the environmentally important gas dimethyl sulfide (DMS). We describe an enzyme, DddY, which cleaves DMSP into DMS plus acrylate and is located in the bacterial periplasm, unlike other DMSP lyases that catalyse this reaction. There are dddY-like genes in strains of Alcaligenes, Arcobacter and Shewanella, in the β-, ɛ- and γ-proteobacteria, respectively. In Alcaligenes, dddY is in a cluster of ddd and acu genes that resemble, but also have significant differences to, those in other bacteria that catabolise both DMSP and acrylate. Although production of DMS and transcription of Alcaligenes dddY are both apparently inducible by pre-growth of cells with DMSP, this substrate must be catabolised to form acrylate, the bona fide coinducer.
Nature microbiology | 2017
Andrew R. J. Curson; Ji Liu; Ana Bermejo Martínez; Robert T. Green; Yohan Chan; Ornella Carrión; Beth T. Williams; Sheng-Hui Zhang; Gui-Peng Yang; Philip C. Bulman Page; Xiao-Hua Zhang; Jonathan D. Todd
Dimethylsulfoniopropionate (DMSP) is one of the Earths most abundant organosulfur molecules, a signalling molecule1, a key nutrient for marine microorganisms2,3 and the major precursor for gaseous dimethyl sulfide (DMS). DMS, another infochemical in signalling pathways4, is important in global sulfur cycling2 and affects the Earths albedo, and potentially climate, via sulfate aerosol and cloud condensation nuclei production5,6. It was thought that only eukaryotes produce significant amounts of DMSP7–9, but here we demonstrate that many marine heterotrophic bacteria also produce DMSP, probably using the same methionine (Met) transamination pathway as macroalgae and phytoplankton10. We identify the first DMSP synthesis gene in any organism, dsyB, which encodes the key methyltransferase enzyme of this pathway and is a reliable reporter for bacterial DMSP synthesis in marine Alphaproteobacteria. DMSP production and dsyB transcription are upregulated by increased salinity, nitrogen limitation and lower temperatures in our model DMSP-producing bacterium Labrenzia aggregata LZB033. With significant numbers of dsyB homologues in marine metagenomes, we propose that bacteria probably make a significant contribution to oceanic DMSP production. Furthermore, because DMSP production is not solely associated with obligate phototrophs, the process need not be confined to the photic zones of marine environments and, as such, may have been underestimated.
PLOS ONE | 2011
Matthew J. Sullivan; Andrew R. J. Curson; Neil Shearer; Jonathan D. Todd; Robert T. Green; Andrew W. B. Johnston
Rhodobacter sphaeroides strain 2.4.1 is a widely studied bacterium that has recently been shown to cleave the abundant marine anti-stress molecule dimethylsulfoniopropionate (DMSP) into acrylate plus gaseous dimethyl sulfide. It does so by using a lyase encoded by dddL, the promoter-distal gene of a three-gene operon, acuR-acuI-dddL. Transcription of the operon was enhanced when cells were pre-grown with the substrate DMSP, but this induction is indirect, and requires the conversion of DMSP to the product acrylate, the bona fide co-inducer. This regulation is mediated by the product of the promoter-proximal gene acuR, a transcriptional regulator in the TetR family. AcuR represses the operon in the absence of acrylate, but this is relieved by the presence of the co-inducer. Another unusual regulatory feature is that the acuR-acuI-dddL mRNA transcript is leaderless, such that acuR lacks a Shine-Dalgarno ribosomal binding site and 5′-UTR, and is translated at a lower level compared to the downstream genes. This regulatory unit may be quite widespread in bacteria, since several other taxonomically diverse lineages have adjacent acuR-like and acuI-like genes; these operons also have no 5′ leader sequences or ribosomal binding sites and their predicted cis-acting regulatory sequences resemble those of R. sphaeroides acuR-acuI-dddL.
The ISME Journal | 2010
Andrew R. J. Curson; Matthew J. Sullivan; Jonathan D. Todd; Andrew W. B. Johnston
Phytoplankton are the primary producers of the sulfur-containing compatible solute dimethylsulfoniopropionate (DMSP). These cells are consumed by mesozooplankton, which, in turn, may be eaten by marine vertebrates. From the gut of one such animal, the Atlantic Herring Clupea harengus, we isolated strains of the γ-proteobacteria Pseudomonas and Psychrobacter that grew on DMSP as sole carbon source, and which produced the environmentally important sulfurous volatile dimethyl sulfide (DMS). In both bacterial genera, this ability was because of the previously identified gene dddD, which specifies an enzyme that liberates DMS from DMSP. DMS production was stimulated by pre-growth of cells on the substrate DMSP. This is the first identification of DMSP-degrading bacteria and their relevant genes in the gut microflora of any vertebrate.
PLOS ONE | 2012
Jonathan D. Todd; Andrew R. J. Curson; Matthew J. Sullivan; Mark Kirkwood; Andrew W. B. Johnston
The Escherichia coli YhdH polypeptide is in the MDR012 sub-group of medium chain reductase/dehydrogenases, but its biological function was unknown and no phenotypes of YhdH− mutants had been described. We found that an E. coli strain with an insertional mutation in yhdH was hyper-sensitive to inhibitory effects of acrylate, and, to a lesser extent, to those of 3-hydroxypropionate. Close homologues of YhdH occur in many Bacterial taxa and at least two animals. The acrylate sensitivity of YhdH− mutants was corrected by the corresponding, cloned homologues from several bacteria. One such homologue is acuI, which has a role in acrylate degradation in marine bacteria that catabolise dimethylsulfoniopropionate (DMSP) an abundant anti-stress compound made by marine phytoplankton. The acuI genes of such bacteria are often linked to ddd genes that encode enzymes that cleave DMSP into acrylate plus dimethyl sulfide (DMS), even though these are in different polypeptide families, in unrelated bacteria. Furthermore, most strains of Roseobacters, a clade of abundant marine bacteria, cleave DMSP into acrylate plus DMS, and can also demethylate it, using DMSP demethylase. In most Roseobacters, the corresponding gene, dmdA, lies immediately upstream of acuI and in the model Roseobacter strain Ruegeria pomeroyi DSS-3, dmdA-acuI were co-regulated in response to the co-inducer, acrylate. These observations, together with findings by others that AcuI has acryloyl-CoA reductase activity, lead us to suggest that YdhH/AcuI enzymes protect cells against damaging effects of intracellular acryloyl-CoA, formed endogenously, and/or via catabolising exogenous acrylate. To provide “added protection” for bacteria that form acrylate from DMSP, acuI was recruited into clusters of genes involved in this conversion and, in the case of acuI and dmdA in the Roseobacters, their co-expression may underpin an interaction between the two routes of DMSP catabolism, whereby the acrylate product of DMSP lyases is a co-inducer for the demethylation pathway.