Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew R. Moorhead is active.

Publication


Featured researches published by Andrew R. Moorhead.


Infection and Immunity | 2006

The GTPase Rab4 Interacts with Chlamydia trachomatis Inclusion Membrane Protein CT229

K. A. Rzomp; Andrew R. Moorhead; Marci A. Scidmore

ABSTRACT Chlamydiae, which are obligate intracellular bacteria, replicate in a nonlysosomal vacuole, termed an inclusion. Although neither the host nor the chlamydial proteins that mediate the intracellular trafficking of the inclusion have been clearly identified, several enhanced green fluorescent protein (GFP)-tagged Rab GTPases, including Rab4A, are recruited to chlamydial inclusions. GFP-Rab4A associates with inclusions in a species-independent fashion by 2 h postinfection by mechanisms that have not yet been elucidated. To test whether chlamydial inclusion membrane proteins (Incs) recruit Rab4 to the inclusion, we screened a collection of chlamydial Incs for their ability to interact with Rab4A by using a yeast two-hybrid assay. From our analysis, we identified a specific interaction between Rab4A and Chlamydia trachomatis Inc CT229, which is expressed during the initial stages of infection. CT229 interacts with only wild-type Rab4A and the constitutively active GTPase-deficient Rab4AQ67L but not with the dominant-negative GDP-restricted Rab4AS22N mutant. To confirm the interaction between CT229 and Rab4A, we demonstrated that DsRed-CT229 colocalized with GFP-Rab4A in HeLa cells and more importantly wild-type and constitutively active GFP-Rab4A colocalized with CT229 at the inclusion membrane in C. trachomatis serovar L2-infected HeLa cells. Taken together, these data suggest that CT229 interacts with and recruits Rab4A to the inclusion membrane and therefore may play a role in regulating the intracellular trafficking or fusogenicity of the chlamydial inclusion.


Journal of Immunology | 2012

Eosinophils Preserve Parasitic Nematode Larvae by Regulating Local Immunity

Nebiat G. Gebreselassie; Andrew R. Moorhead; Valeria Fabre; Lucille F. Gagliardo; Nancy A. Lee; James J. Lee; Judith A. Appleton

Eosinophils play important roles in regulation of cellular responses under conditions of homeostasis or infection. Intestinal infection with the parasitic nematode, Trichinella spiralis, induces a pronounced eosinophilia that coincides with establishment of larval stages in skeletal muscle. We have shown previously that in mouse strains in which the eosinophil lineage is ablated, large numbers of T. spiralis larvae are killed by NO, implicating the eosinophil as an immune regulator. In this report, we show that parasite death in eosinophil-ablated mice correlates with reduced recruitment of IL-4+ T cells and enhanced recruitment of inducible NO synthase (iNOS)-producing neutrophils to infected muscle, as well as increased iNOS in local F4/80+CD11b+Ly6C+ macrophages. Actively growing T. spiralis larvae were susceptible to killing by NO in vitro, whereas mature larvae were highly resistant. Growth of larvae was impaired in eosinophil-ablated mice, potentially extending the period of susceptibility to the effects of NO and enhancing parasite clearance. Transfer of eosinophils into eosinophil-ablated ΔdblGATA mice restored larval growth and survival. Regulation of immunity was not dependent upon eosinophil peroxidase or major basic protein 1 and did not correlate with activity of the IDO pathway. Our results suggest that eosinophils support parasite growth and survival by promoting accumulation of Th2 cells and preventing induction of iNOS in macrophages and neutrophils. These findings begin to define the cellular interactions that occur at an extraintestinal site of nematode infection in which the eosinophil functions as a pivotal regulator of immunity.


PLOS Neglected Tropical Diseases | 2014

Detection of Circulating Parasite-Derived MicroRNAs in Filarial Infections

Lucienne Tritten; Erica Burkman; Andrew R. Moorhead; Mohammed Satti; James F. Geary; Charles D. Mackenzie; Timothy G. Geary

Filarial nematodes cause chronic and profoundly debilitating diseases in both humans and animals. Applications of novel technology are providing unprecedented opportunities to improve diagnosis and our understanding of the molecular basis for host-parasite interactions. As a first step, we investigated the presence of circulating miRNAs released by filarial nematodes into the host bloodstream. miRNA deep-sequencing combined with bioinformatics revealed over 200 mature miRNA sequences of potential nematode origin in Dirofilaria immitis-infected dog plasma in two independent analyses, and 21 in Onchocerca volvulus-infected human serum. Total RNA obtained from D. immitis-infected dog plasma was subjected to stem-loop RT-qPCR assays targeting two detected miRNA candidates, miR-71 and miR-34. Additionally, Brugia pahangi-infected dog samples were included in the analysis, as these miRNAs were previously detected in extracts prepared from this species. The presence of miR-71 and miR-34 discriminated infected samples (both species) from uninfected samples, in which no specific miRNA amplification occurred. However, absolute miRNA copy numbers were not significantly correlated with microfilaraemia for either parasite. This may be due to the imprecision of mf counts to estimate infection intensity or to miRNA contributions from the unknown number of adult worms present. Nonetheless, parasite-derived circulating miRNAs are found in plasma or serum even for those species that do not live in the bloodstream.


PLOS Neglected Tropical Diseases | 2015

Release of Small RNA-containing Exosome-like Vesicles from the Human Filarial Parasite Brugia malayi.

Mostafa Zamanian; Lisa M Fraser; Prince N. Agbedanu; Hiruni Harischandra; Andrew R. Moorhead; Tim A. Day; Lyric C. Bartholomay; Michael J. Kimber

Lymphatic filariasis (LF) is a socio-economically devastating mosquito-borne Neglected Tropical Disease caused by parasitic filarial nematodes. The interaction between the parasite and host, both mosquito and human, during infection, development and persistence is dynamic and delicately balanced. Manipulation of this interface to the detriment of the parasite is a promising potential avenue to develop disease therapies but is prevented by our very limited understanding of the host-parasite relationship. Exosomes are bioactive small vesicles (30–120 nm) secreted by a wide range of cell types and involved in a wide range of physiological processes. Here, we report the identification and partial characterization of exosome-like vesicles (ELVs) released from the infective L3 stage of the human filarial parasite Brugia malayi. Exosome-like vesicles were isolated from parasites in culture media and electron microscopy and nanoparticle tracking analysis were used to confirm that vesicles produced by juvenile B. malayi are exosome-like based on size and morphology. We show that loss of parasite viability correlates with a time-dependent decay in vesicle size specificity and rate of release. The protein cargo of these vesicles is shown to include common exosomal protein markers and putative effector proteins. These Brugia-derived vesicles contain small RNA species that include microRNAs with host homology, suggesting a potential role in host manipulation. Confocal microscopy shows J774A.1, a murine macrophage cell line, internalize purified ELVs, and we demonstrate that these ELVs effectively stimulate a classically activated macrophage phenotype in J774A.1. To our knowledge, this is the first report of exosome-like vesicle release by a human parasitic nematode and our data suggest a novel mechanism by which human parasitic nematodes may actively direct the host responses to infection. Further interrogation of the makeup and function of these bioactive vesicles could seed new therapeutic strategies and unearth stage-specific diagnostic biomarkers.


Infection and Immunity | 2007

The Rab6 effector Bicaudal D1 associates with Chlamydia trachomatis inclusions in a biovar-specific manner.

Andrew R. Moorhead; K. A. Rzomp; Marci A. Scidmore

ABSTRACT Chlamydia species are obligate intracellular bacteria that replicate within a membrane-bound vacuole, the inclusion, which is trafficked to the peri-Golgi region by processes that are dependent on early chlamydial gene expression. Although neither the host nor the chlamydial proteins that regulate the intracellular trafficking have been clearly defined, several enhanced green fluorescent protein (EGFP)-tagged Rab GTPases, including Rab6, are recruited to Chlamydia trachomatis inclusions. To further characterize the association of Rab6 with C. trachomatis inclusions, we examined the intracellular localization of guanine nucleotide-binding mutants of Rab6 and demonstrated that only active GTP-bound and not inactive GDP-bound EGFP-Rab6 mutants were recruited to the inclusion, suggesting that EGFP-Rab6 interacts with the inclusion via a host Rab6 effector or a chlamydial protein that mimics a Rab6 effector. Using EGFP-tagged fusion proteins, we also demonstrated that the Rab6 effector Bicaudal D1 (BICD1) localized to C. trachomatis inclusions in a biovar-specific manner. In addition, we demonstrated that EGFP-Rab6 and its effector EGFP-BICD1 are recruited to the inclusion in a microtubule- and Golgi apparatus-independent but chlamydial gene expression-dependent mechanism. Finally, in contrast to the Rab6-dependent Golgi apparatus localization of endogenous BICD1, EGFP-BICD1 was recruited to the inclusion by a Rab6-independent mechanism. Collectively, these data demonstrate that neither Rab6 nor BICD1 is trafficked to the inclusion via a Golgi apparatus-localized intermediate, suggesting that each protein is trafficked to the C. trachomatis serovar L2 inclusion by a unique, but as-yet-undefined, mechanism.


Veterinary Parasitology | 2014

Ivermectin-dependent attachment of neutrophils and peripheral blood mononuclear cells to Dirofilaria immitis microfilariae in vitro.

Adriano F. Vatta; Michael T. Dzimianski; Bob E. Storey; Melinda S. Camus; Andrew R. Moorhead; Ray M. Kaplan; Adrian J. Wolstenholme

The macrocyclic lactones are the only anthelmintics used to prevent heartworm disease, but it is very difficult to reproduce their in vivo efficacy against Dirofilaria immitis larvae in experiments in vitro. These assays typically measure motility, suggesting that paralysis is not the mode of action of the macrocyclic lactones against D. immitis. We isolated peripheral blood mononuclear cells (PBMC) and neutrophils from uninfected dogs and measured their adherence to D. immitis microfilariae in the presence of varying concentrations of ivermectin. We found that adherence of PBMC to the microfilariae was increased in the presence of ivermectin concentrations ≥100 nM and adherence of neutrophils was increased in drug concentrations ≥10 nM. Up to 50% of microfilariae had adherent PBMC in the presence of the drug, and binding was maximal after 40 h incubation. Neutrophil adherence was maximal after 16 h, with approximately 20% of the microfilariae having at least one cell adhered to them. Adherent neutrophils showed morphological evidence of activation. These results are consistent with a model in which the macrocyclic lactones interfere with the parasites ability to evade the hosts innate immune system.


PLOS Neglected Tropical Diseases | 2011

The NIH-NIAID Filariasis Research Reagent Resource Center.

Michelle L. Michalski; Kathryn G. Griffiths; Steven Williams; Ray M. Kaplan; Andrew R. Moorhead

Filarial worms cause a variety of tropical diseases in humans; however, they are difficult to study because they have complex life cycles that require arthropod intermediate hosts and mammalian definitive hosts. Research efforts in industrialized countries are further complicated by the fact that some filarial nematodes that cause disease in humans are restricted in host specificity to humans alone. This potentially makes the commitment to research difficult, expensive, and restrictive. Over 40 years ago, the United States National Institutes of Health–National Institute of Allergy and Infectious Diseases (NIH-NIAID) established a resource from which investigators could obtain various filarial parasite species and life cycle stages without having to expend the effort and funds necessary to maintain the entire life cycles in their own laboratories. This centralized resource (The Filariasis Research Reagent Resource Center, or FR3) translated into cost savings to both NIH-NIAID and to principal investigators by freeing up personnel costs on grants and allowing investigators to divert more funds to targeted research goals. Many investigators, especially those new to the field of tropical medicine, are unaware of the scope of materials and support provided by the FR3. This review is intended to provide a short history of the contract, brief descriptions of the fiilarial species and molecular resources provided, and an estimate of the impact the resource has had on the research community, and describes some new additions and potential benefits the resource center might have for the ever-changing research interests of investigators.


Parasitology | 2015

The emergence of macrocyclic lactone resistance in the canine heartworm, Dirofilaria immitis .

Adrian J. Wolstenholme; Christopher C. Evans; Pablo D. Jimenez; Andrew R. Moorhead

Prevention of heartworm disease caused by Dirofilaria immitis in domestic dogs and cats relies on a single drug class, the macrocyclic lactones (MLs). Recently, it has been demonstrated that ML-resistant D. immitis are circulating in the Mississippi Delta region of the USA, but the prevalence and impact of these resistant parasites remains unknown. We review published studies that demonstrated resistance in D.immitis, along with our current understanding of its mechanisms. Efforts to develop in vitro tests for resistance have not yet yielded a suitable assay, so testing infected animals for microfilariae that persist in the face of ML treatment may be the best current option. Since the vast majority of D. immitis populations continue to be drug-sensitive, protected dogs are likely to be infected with only a few parasites and experience relatively mild disease. In cats, infection with small numbers of worms can cause severe disease and so the clinical consequences of drug resistance may be more severe. Since melarsomine dihydrochloride, the drug used to remove adult worms, is not an ML, the ML-resistance should have no impact on our ability to treat diseased animals. A large refugium of heartworms that are not exposed to drugs exists in unprotected dogs and in wild canids, which may limit the development and spread of resistance alleles.


PLOS Neglected Tropical Diseases | 2016

The Effect of In Vitro Cultivation on the Transcriptome of Adult Brugia malayi

Cristina Ballesteros; Lucienne Tritten; Maeghan O’Neill; Erica Burkman; Weam I. Zaky; Jianguo Xia; Andrew R. Moorhead; Steven Williams; Timothy G. Geary

Background Filarial nematodes cause serious and debilitating infections in human populations of tropical countries, contributing to an entrenched cycle of poverty. Only one human filarial parasite, Brugia malayi, can be maintained in rodents in the laboratory setting. It has been a widely used model organism in experiments that employ culture systems, the impact of which on the worms is unknown. Methodology/Principal Findings Using Illumina RNA sequencing, we characterized changes in gene expression upon in vitro maintenance of adult B. malayi female worms at four time points: immediately upon removal from the host, immediately after receipt following shipment, and after 48 h and 5 days in liquid culture media. The dramatic environmental change and the 24 h time lapse between removal from the host and establishment in culture caused a globally dysregulated gene expression profile. We found a maximum of 562 differentially expressed genes based on pairwise comparison between time points. After an initial shock upon removal from the host and shipping, a few stress fingerprints remained after 48 h in culture and until the experiment was stopped. This was best illustrated by a strong and persistent up-regulation of several genes encoding cuticle collagens, as well as serpins. Conclusions/Significance These findings suggest that B. malayi can be maintained in culture as a valid system for pharmacological and biological studies, at least for several days after removal from the host and adaptation to the new environment. However, genes encoding several stress indicators remained dysregulated until the experiment was stopped.


International Journal for Parasitology-Drugs and Drug Resistance | 2013

Development of an in vitro bioassay for measuring susceptibility to macrocyclic lactone anthelmintics in Dirofilaria immitis

Christopher C. Evans; Andrew R. Moorhead; Bobby E. Storey; Adrian J. Wolstenholme; Ray M. Kaplan

Graphical abstract

Collaboration


Dive into the Andrew R. Moorhead's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge