Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew R. Pitt is active.

Publication


Featured researches published by Andrew R. Pitt.


Molecular & Cellular Proteomics | 2008

Urinary proteomic biomarkers in coronary artery disease

Lukas Zimmerli; Eric Schiffer; Petra Zürbig; David M. Good; Markus Kellmann; Laetitia Mouls; Andrew R. Pitt; Joshua J. Coon; Roland E. Schmieder; Karlheinz Peter; Harald Mischak; Walter Kolch; Christian Delles; Anna F. Dominiczak

Urinary proteomics is emerging as a powerful non-invasive tool for diagnosis and monitoring of variety of human diseases. We tested whether signatures of urinary polypeptides can contribute to the existing biomarkers for coronary artery disease (CAD). We examined a total of 359 urine samples from 88 patients with severe CAD and 282 controls. Spot urine was analyzed using capillary electrophoresis on-line coupled to ESI-TOF-MS enabling characterization of more than 1000 polypeptides per sample. In a first step a “training set” for biomarker definition was created. Multiple biomarker patterns clearly distinguished healthy controls from CAD patients, and we extracted 15 peptides that define a characteristic CAD signature panel. In a second step, the ability of the CAD-specific panel to predict the presence of CAD was evaluated in a blinded study using a “test set.” The signature panel showed sensitivity of 98% (95% confidence interval, 88.7–99.6) and 83% specificity (95% confidence interval, 51.6–97.4). Furthermore the peptide pattern significantly changed toward the healthy signature correlating with the level of physical activity after therapeutic intervention. Our results show that urinary proteomics can identify CAD patients with high confidence and might also play a role in monitoring the effects of therapeutic interventions. The workflow is amenable to clinical routine testing suggesting that non-invasive proteomics analysis can become a valuable addition to other biomarkers used in cardiovascular risk assessment.


Science Signaling | 2010

The Mammalian MAPK/ERK Pathway Exhibits Properties of a Negative Feedback Amplifier

Oliver Sturm; Richard J. Orton; Joan Grindlay; Marc R. Birtwistle; Vladislav Vyshemirsky; David R. Gilbert; Muffy Calder; Andrew R. Pitt; Boris N. Kholodenko; Walter Kolch

Analysis of ERK pathway circuitry suggests appropriate targets for inhibition, providing a guide for drug development. Biological Circuits Inform Drug Development The mitogen-activated protein kinase (MAPK) pathway involves a three-tiered kinase module, which amplifies the signal. Many cells also have negative feedback loops from the last kinase in the module to various points upstream in the pathway. Sturm et al. showed that, with negative feedback loops, the MAPK module results in a system like that of a negative feedback amplifier (NFA), which is an engineering design that smoothens the output to changes in input and makes a system robust to change. These NFA-like properties may explain why some cells are sensitive to inhibition of the second kinase in the cascade (they lack feedback loops), whereas other cells are resistant to inhibition at this point (their feedback loops are intact). These results also have implications for drug development, because inhibitors that target components that are outside the NFA are more effective at inhibiting the pathway. Three-tiered kinase modules, such as the Raf–MEK (mitogen-activated or extracellular signal–regulated protein kinase kinase)–ERK (extracellular signal–regulated kinase) mitogen-activated protein kinase pathway, are widespread in biology, suggesting that this structure conveys evolutionarily advantageous properties. We show that the three-tiered kinase amplifier module combined with negative feedback recapitulates the design principles of a negative feedback amplifier (NFA), which is used in electronic circuits to confer robustness, output stabilization, and linearization of nonlinear signal amplification. We used mathematical modeling and experimental validation to demonstrate that the ERK pathway has properties of an NFA that (i) converts intrinsic switch-like activation kinetics into graded linear responses, (ii) conveys robustness to changes in rates of reactions within the NFA module, and (iii) stabilizes outputs in response to drug-induced perturbations of the amplifier. These properties determine biological behavior, including activation kinetics and the response to drugs.


Nature Reviews Cancer | 2010

Functional proteomics to dissect tyrosine kinase signalling pathways in cancer

Walter Kolch; Andrew R. Pitt

Advances in the generation and interpretation of proteomics data have spurred a transition from focusing on protein identification to functional analysis. Here we review recent proteomics results that have elucidated new aspects of the roles and regulation of signal transduction pathways in cancer using the epidermal growth factor receptor (EGFR), ERK and breakpoint cluster region (BCR)–ABL1 networks as examples. The emerging theme is to understand cancer signalling as networks of multiprotein machines which process information in a highly dynamic environment that is shaped by changing protein interactions and post-translational modifications (PTMs). Cancerous genetic mutations derange these protein networks in complex ways that are tractable by proteomics.


Proteomics | 2008

Protein and peptides in pictures: Imaging with MALDI mass spectrometry

Richard J. A. Goodwin; Stephen R. Pennington; Andrew R. Pitt

Imaging using MS has the potential to deliver highly parallel, multiplexed data on the specific localization of molecular ions in tissue samples directly, and to measure and map the variations of these ions during development and disease progression or treatment. There is an intrinsic potential to be able to identify the biomarkers in the same experiment, or by relatively simple extension of the technique. Unlike many other imaging techniques, no a priori knowledge of the markers being sought is necessary. This review concentrates on the use of MALDI‐MS for MS imaging (MSI) of proteins and peptides, with an emphasis on mammalian tissue. We discuss the methodologies used, their potential limitations, overall experimental considerations and progress that has been made towards establishing MALDI‐MSI as a routine technique for the spatially resolved measurement of peptides and proteins. As well as determining the local abundance of individual molecular ions, there is the potential to determine their identity within the same experiment using relatively simple extensions of the basic techniques. In this way MSI offers an important opportunity for biomarker discovery and identification.


Proteomics Clinical Applications | 2010

Comprehensive human urine standards for comparability and standardization in clinical proteome analysis

Harald Mischak; Walter Kolch; Michalis Aivaliotis; David Bouyssié; Magali Court; Hassan Dihazi; Gry H. Dihazi; Julia Franke; Jérôme Garin; Anne Gonzalez de Peredo; Alexander Iphöfer; Lothar Jänsch; Chrystelle Lacroix; Manousos Makridakis; Christophe Masselon; Jochen Metzger; Bernard Monsarrat; Michal Mrug; Martin Norling; Jan Novak; Andreas Pich; Andrew R. Pitt; Erik Bongcam-Rudloff; Justyna Siwy; Hitoshi Suzuki; Visith Thongboonkerd; Li-Shun Wang; Jerome Zoidakis; Petra Zürbig; Joost P. Schanstra

Purpose: Urine proteomics is emerging as a powerful tool for biomarker discovery. The purpose of this study is the development of a well‐characterized “real life” sample that can be used as reference standard in urine clinical proteomics studies.


Nature Cell Biology | 2006

Regulation of the Raf-MEK-ERK pathway by protein phosphatase 5

Alex von Kriegsheim; Andrew R. Pitt; G. Joan Grindlay; Walter Kolch; Amardeep S. Dhillon

The Raf–MEK–ERK pathway couples growth factor, mitogenic and extracellular matrix signals to cell fate decisions such as growth, proliferation, migration, differentiation and survival. Raf-1 is a direct effector of the Ras GTPase and is the initiating kinase in this signalling cascade. Although Raf-1 activation is well studied, little is known about how Raf-1 is inactivated. Here, we used a proteomic approach to identify molecules that may inactivate Raf-1 signalling. Protein phosphatase 5 (PP5) was identified as an inactivator that associates with Raf-1 on growth factor stimulation and selectively dephosphorylates an essential activating site, Ser 338. The PP5-mediated dephosphorylation of Ser 338 inhibited Raf-1 activity and downstream signalling to MEK, an effect that was prevented by phosphomimetic substitution of Ser 338, or by ablation of PP5 catalytic function. Furthermore, depletion of endogenous PP5 increased cellular phospho-Ser 338 levels. Our results suggest that PP5 is a physiological regulator of Raf-1 signalling pathways.


Clinical Science | 2005

The molecular make-up of a tumour: proteomics in cancer research

Walter Kolch; Harald Mischak; Andrew R. Pitt

The enormous progress in proteomics, enabled by recent advances in MS (mass spectrometry), has brought protein analysis back into the limelight of cancer research, reviving old areas as well as opening new fields of study. In this review, we discuss the basic features of proteomic technologies, including the basics of MS, and we consider the main current applications and challenges of proteomics in cancer research, including (i) protein expression profiling of tumours, tumour fluids and tumour cells; (ii) protein microarrays; (iii) mapping of cancer signalling pathways; (iv) pharmacoproteomics; (v) biomarkers for diagnosis, staging and monitoring of the disease and therapeutic response; and (vi) the immune response to cancer. All these applications continue to benefit from further technological advances, such as the development of quantitative proteomics methods, high-resolution, high-speed and high-sensitivity MS, functional protein assays, and advanced bioinformatics for data handling and interpretation. A major challenge will be the integration of proteomics with genomics and metabolomics data and their functional interpretation in conjunction with clinical results and epidemiology.


Free Radical Biology and Medicine | 2000

Pathways of phospholipid oxidation by HOCl in human LDL detected by LC-MS.

A. Jerlich; Andrew R. Pitt; R. J. Schaur; Corinne M. Spickett

A wealth of evidence now indicates that low-density lipoprotein (LDL) must be modified to promote atherosclerosis, and that this may involve oxidants released by phagocytes. Many studies of oxidative damage in atherosclerosis previously have concentrated on damage by nonhalogenated oxidants, but HOCl is a highly toxic oxidant produced by myeloperoxidase in phagocytes, which is also likely to be important in the disease pathogenesis. Currently some controversy exists over the products resulting from reaction of HOCl with LDL lipids, in particular regarding whether predominantly chlorohydrins or lipid peroxides are formed. In this study LC-MS of phosphatidylcholines in human LDL treated either with HOCl or the myeloperoxidase system was used as a specific method to detect chlorohydrin and peroxide formation simultaneously, and with comparable sensitivity. Chlorohydrin products from lipids containing oleic, linoleic and arachidonic acids were detected, but no hydroperoxides of linoleoyl or arachidonoyl lipids could be observed. This study provides the first direct evidence that lipid chlorohydrins rather than peroxides are the major products of HOCl- or myeloperoxidase-treated LDL phospholipids. This in turn provides important information required for the study of oxidative damage in vivo which will allow the type and source of oxidants involved in the pathology of atherosclerosis to be investigated.


Journal of Lipid Research | 2013

A comparison of five lipid extraction solvent systems for lipidomic studies of human LDL

Ana Reis; Alisa Rudnitskaya; Gavin Blackburn; Norsyahida Mohd Fauzi; Andrew R. Pitt; Corinne M. Spickett

Lipidome profile of fluids and tissues is a growing field as the role of lipids as signaling molecules is increasingly understood, relying on an effective and representative extraction of the lipids present. A number of solvent systems suitable for lipid extraction are commonly in use, though no comprehensive investigation of their effectiveness across multiple lipid classes has been carried out. To address this, human LDL from normolipidemic volunteers was used to evaluate five different solvent extraction protocols [Folch, Bligh and Dyer, acidified Bligh and Dyer, methanol (MeOH)-tert-butyl methyl ether (TBME), and hexane-isopropanol] and the extracted lipids were analyzed by LC-MS in a high-resolution instrument equipped with polarity switching. Overall, more than 350 different lipid species from 19 lipid subclasses were identified. Solvent composition had a small effect on the extraction of predominant lipid classes (triacylglycerides, cholesterol esters, and phosphatidylcholines). In contrast, extraction of less abundant lipids (phosphatidylinositols, lyso-lipids, ceramides, and cholesterol sulfates) was greatly influenced by the solvent system used. Overall, the Folch method was most effective for the extraction of a broad range of lipid classes in LDL, although the hexane-isopropanol method was best for apolar lipids and the MeOH-TBME method was suitable for lactosyl ceramides.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies

Julien Reboud; Yannyk Bourquin; Rab Wilson; Gurman S. Pall; Meesbah Jiwaji; Andrew R. Pitt; Anne Graham; Andrew P. Waters; Jonathan M. Cooper

Ultrasonics offers the possibility of developing sophisticated fluid manipulation tools in lab-on-a-chip technologies. Here we demonstrate the ability to shape ultrasonic fields by using phononic lattices, patterned on a disposable chip, to carry out the complex sequence of fluidic manipulations required to detect the rodent malaria parasite Plasmodium berghei in blood. To illustrate the different tools that are available to us, we used acoustic fields to produce the required rotational vortices that mechanically lyse both the red blood cells and the parasitic cells present in a drop of blood. This procedure was followed by the amplification of parasitic genomic sequences using different acoustic fields and frequencies to heat the sample and perform a real-time PCR amplification. The system does not require the use of lytic reagents nor enrichment steps, making it suitable for further integration into lab-on-a-chip point-of-care devices. This acoustic sample preparation and PCR enables us to detect ca. 30 parasites in a microliter-sized blood sample, which is the same order of magnitude in sensitivity as lab-based PCR tests. Unlike other lab-on-a-chip methods, where the sample moves through channels, here we use our ability to shape the acoustic fields in a frequency-dependent manner to provide different analytical functions. The methods also provide a clear route toward the integration of PCR to detect pathogens in a single handheld system.

Collaboration


Dive into the Andrew R. Pitt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Walter Kolch

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge