Andrew Rowan
Francis Crick Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrew Rowan.
Cancer Discovery | 2015
Nirupa Murugaesu; Gareth A. Wilson; Nicolai Juul Birkbak; Thomas B.K. Watkins; Nicholas McGranahan; Sacheen Kumar; Nima Abbassi-Ghadi; Max Salm; Richard Mitter; Stuart Horswell; Andrew Rowan; Benjamin Phillimore; Jennifer Biggs; Sharmin Begum; Nik Matthews; Daniel Hochhauser; George B. Hanna; Charles Swanton
UNLABELLEDnEsophageal adenocarcinomas are associated with a dismal prognosis. Deciphering the evolutionary history of this disease may shed light on therapeutically tractable targets and reveal dynamic mutational processes during the disease course and following neoadjuvant chemotherapy (NAC). We exome sequenced 40 tumor regions from 8 patients with operable esophageal adenocarcinomas, before and after platinum-containing NAC. This revealed the evolutionary genomic landscape of esophageal adenocarcinomas with the presence of heterogeneous driver mutations, parallel evolution, early genome-doubling events, and an association between high intratumor heterogeneity and poor response to NAC. Multiregion sequencing demonstrated a significant reduction in thymine to guanine mutations within a CpTpT context when comparing early and late mutational processes and the presence of a platinum signature with enrichment of cytosine to adenine mutations within a CpC context following NAC. Esophageal adenocarcinomas are characterized by early chromosomal instability leading to amplifications containing targetable oncogenes persisting through chemotherapy, providing a rationale for future therapeutic approaches.nnnSIGNIFICANCEnThis work illustrates dynamic mutational processes occurring during esophageal adenocarcinoma evolution and following selective pressures of platinum exposure, emphasizing the iatrogenic impact of therapy on cancer evolution. Identification of amplifications encoding targetable oncogenes maintained through NAC suggests the presence of stable vulnerabilities, unimpeded by cytotoxics, suitable for therapeutic intervention.
Lancet Oncology | 2017
Samra Turajlic; Kevin Litchfield; Hang Xu; Rachel Rosenthal; Nicholas McGranahan; James L. Reading; Yien Ning S Wong; Andrew Rowan; Nnennaya Kanu; Maise Al Bakir; Tim Chambers; Roberto Salgado; Peter Savas; Sherene Loi; Nicolai Juul Birkbak; Laurent Sansregret; Martin Gore; James Larkin; Sergio A. Quezada; Charles Swanton
BACKGROUNDnThe focus of tumour-specific antigen analyses has been on single nucleotide variants (SNVs), with the contribution of small insertions and deletions (indels) less well characterised. We investigated whether the frameshift nature of indel mutations, which create novel open reading frames and a large quantity of mutagenic peptides highly distinct from self, might contribute to the immunogenic phenotype.nnnMETHODSnWe analysed whole-exome sequencing data from 5777 solid tumours, spanning 19 cancer types from The Cancer Genome Atlas. We compared the proportion and number of indels across the cohort, with a subset of results replicated in two independent datasets. We assessed in-silico tumour-specific neoantigen predictions by mutation type with pan-cancer analysis, together with RNAseq profiling in renal clear cell carcinoma cases (n=392), to compare immune gene expression across patient subgroups. Associations between indel burden and treatment response were assessed across four checkpoint inhibitor datasets.nnnFINDINGSnWe observed renal cell carcinomas to have the highest proportion (0·12) and number of indel mutations across the pan-cancer cohort (p<2·2u2008×u200810-16), more than double the median proportion of indel mutations in all other cancer types examined. Analysis of tumour-specific neoantigens showed that enrichment of indel mutations for high-affinity binders was three times that of non-synonymous SNV mutations. Furthermore, neoantigens derived from indel mutations were nine times enriched for mutant specific binding, as compared with non-synonymous SNV derived neoantigens. Immune gene expression analysis in the renal clear cell carcinoma cohort showed that the presence of mutant-specific neoantigens was associated with upregulation of antigen presentation genes, which correlated (r=0·78) with T-cell activation as measured by CD8-positive expression. Finally, analysis of checkpoint inhibitor response data revealed frameshift indel count to be significantly associated with checkpoint inhibitor response across three separate melanoma cohorts (p=4·7u2008×u200810-4).nnnINTERPRETATIONnRenal cell carcinomas have the highest pan-cancer proportion and number of indel mutations. Evidence suggests indels are a highly immunogenic mutational class, which can trigger an increased abundance of neoantigens and greater mutant-binding specificity.nnnFUNDINGnCancer Research UK, UK National Institute for Health Research (NIHR) at the Royal Marsden Hospital National Health Service Foundation Trust, Institute of Cancer Research and University College London Hospitals Biomedical Research Centres, the UK Medical Research Council, the Rosetrees Trust, Novo Nordisk Foundation, the Prostate Cancer Foundation, the Breast Cancer Research Foundation, the European Research Council.
Science | 2017
Kamila Naxerova; Johannes G. Reiter; Elena F. Brachtel; Jochen K. Lennerz; Marc van de Wetering; Andrew Rowan; Tianxi Cai; Hans Clevers; Charles Swanton; Martin A. Nowak; Stephen J. Elledge; Rakesh K. Jain
Metastases undergo reconstruction Cancer cells from primary tumors can migrate to regional lymph nodes and distant organs. The prevailing model in oncology is that lymph node metastases give rise to distant metastases. This “sequential progression model” is the rationale for surgical removal of tumor-draining lymph nodes. Naxerova et al. used phylogenetic methods to reconstruct the evolutionary relationship of primary tumors, lymph node metastases, and distant metastases in 17 patients with colorectal cancer (see the Perspective by Markowitz). The sequential progression model applied to only one-third of the patients. In the other two-thirds, distant metastases and lymph node metastases originated from independent subclones within the primary tumor. Science, this issue p. 55; see also p. 35 Contrary to expectation, lymphatic and distant metastases often arise independently in human colorectal cancer. The spread of cancer cells from primary tumors to regional lymph nodes is often associated with reduced survival. One prevailing model to explain this association posits that fatal, distant metastases are seeded by lymph node metastases. This view provides a mechanistic basis for the TNM staging system and is the rationale for surgical resection of tumor-draining lymph nodes. Here we examine the evolutionary relationship between primary tumor, lymph node, and distant metastases in human colorectal cancer. Studying 213 archival biopsy samples from 17 patients, we used somatic variants in hypermutable DNA regions to reconstruct high-confidence phylogenetic trees. We found that in 65% of cases, lymphatic and distant metastases arose from independent subclones in the primary tumor, whereas in 35% of cases they shared common subclonal origin. Therefore, two different lineage relationships between lymphatic and distant metastases exist in colorectal cancer.
Nature Communications | 2015
Michal Kovac; Carolina Navas; Stuart Horswell; M. Salm; Chiara Bardella; Andrew Rowan; Mark Stares; Francesc Castro-Giner; Rosalie Fisher; E. C de Bruin; Monika Kováčová; Maggie Gorman; Seiko Makino; J Williams; Emma Jaeger; Angela Jones; Km Howarth; James Larkin; L. M. Pickering; Martin Gore; David L. Nicol; Steven Hazell; Gordon Stamp; Tim O'Brien; Ben Challacombe; Nik Matthews; Benjamin Phillimore; Sharmin Begum; Adam Rabinowitz; Ignacio Varela
Papillary renal cell carcinoma (pRCC) is an important subtype of kidney cancer with a problematic pathological classification and highly variable clinical behaviour. Here we sequence the genomes or exomes of 31 pRCCs, and in four tumours, multi-region sequencing is undertaken. We identify BAP1, SETD2, ARID2 and Nrf2 pathway genes (KEAP1, NHE2L2 and CUL3) as probable drivers, together with at least eight other possible drivers. However, only ~10% of tumours harbour detectable pathogenic changes in any one driver gene, and where present, the mutations are often predicted to be present within cancer sub-clones. We specifically detect parallel evolution of multiple SETD2 mutations within different sub-regions of the same tumour. By contrast, large copy number gains of chromosomes 7, 12, 16 and 17 are usually early, monoclonal changes in pRCC evolution. The predominance of large copy number variants as the major drivers for pRCC highlights an unusual mode of tumorigenesis that may challenge precision medicine approaches.
Oncogene | 2009
Stefania Segditsas; Andrew Rowan; Kimberley Howarth; Angela Jones; Simon Leedham; Nicholas A. Wright; Patricia Gorman; William G. Chambers; Enric Domingo; Rebecca Roylance; Elinor Sawyer; Oliver M. Sieber; Ian Tomlinson
The seminal ‘two-hit hypothesis’ implicitly assumes that bi-allelic tumour suppressor gene (TSG) mutations cause loss of protein function. All subsequent events in that tumour therefore take place on an essentially null background for that TSG protein. We have shown that the two-hit model requires modification for the APC TSG, because mutant APC proteins probably retain some function and the two hits are co-selected to produce an optimal level of Wnt activation. We wondered whether the optimal Wnt level might change during tumour progression, leading to selection for more than two hits at the APC locus. Comprehensive screening of a panel of colorectal cancer (CRC) cell lines and primary CRCs showed that some had indeed acquired third hits at APC. These third hits were mostly copy number gains or deletions, but could be protein-truncating mutations. Third hits were significantly less common when the second hit at APC had arisen by copy-neutral loss of heterozygosity. Both polyploid and near-diploid CRCs had third hits, and the third hits did not simply arise as a result of acquiring a polyploid karyotype. The third hits affected mRNA and protein levels, with potential functional consequences for Wnt signalling and tumour growth. Although some third hits were probably secondary to genomic instability, others did appear specifically to target APC. Whilst it is generally believed that tumours develop and progress through stepwise accumulation of mutations in different functional pathways, it also seems that repeated targeting of the same pathway and/or gene is selected in some cancers.
Cancer Cell | 2017
Carlos López-García; Laurent Sansregret; Enric Domingo; Nicholas McGranahan; Sebastijan Hobor; Nicolai Juul Birkbak; Stuart Horswell; Eva Grönroos; Francesco Favero; Andrew Rowan; Nicholas Matthews; Sharmin Begum; Benjamin Phillimore; Rebecca Burrell; Dahmane Oukrif; Bradley Spencer-Dene; Michal Kovac; Gordon Stamp; Aengus Stewart; Håvard E. Danielsen; Marco Novelli; Ian Tomlinson; Charles Swanton
Summary Chromosomal instability (CIN) contributes to cancer evolution, intratumor heterogeneity, and drug resistance. CIN is driven by chromosome segregation errors and a tolerance phenotype that permits the propagation of aneuploid genomes. Through genomic analysis of colorectal cancers and cell lines, we find frequent loss of heterozygosity and mutations in BCL9L in aneuploid tumors. BCL9L deficiency promoted tolerance of chromosome missegregation events, propagation of aneuploidy, and genetic heterogeneity in xenograft models likely through modulation of Wnt signaling. We find that BCL9L dysfunction contributes to aneuploidy tolerance in both TP53-WT and mutant cells by reducing basal caspase-2 levels and preventing cleavage of MDM2 and BID. Efforts to exploit aneuploidy tolerance mechanisms and the BCL9L/caspase-2/BID axis may limit cancer diversity and evolution.
PLOS Medicine | 2016
Peter Savas; Zhi Ling Teo; Christophe Lefevre; Christoffer Flensburg; Franco Caramia; Kathryn Alsop; Mariam Mansour; Prudence A. Francis; Heather A. Thorne; Maria Joao Silva; Nnennaya Kanu; Michelle Dietzen; Andrew Rowan; Maik Kschischo; Stephen B. Fox; David Bowtell; Sarah-Jane Dawson; Terence P. Speed; Charles Swanton; Sherene Loi
Background Understanding the cancer genome is seen as a key step in improving outcomes for cancer patients. Genomic assays are emerging as a possible avenue to personalised medicine in breast cancer. However, evolution of the cancer genome during the natural history of breast cancer is largely unknown, as is the profile of disease at death. We sought to study in detail these aspects of advanced breast cancers that have resulted in lethal disease. Methods and Findings Three patients with oestrogen-receptor (ER)-positive, human epidermal growth factor receptor 2 (HER2)-negative breast cancer and one patient with triple negative breast cancer underwent rapid autopsy as part of an institutional prospective community-based rapid autopsy program (CASCADE). Cases represented a range of management problems in breast cancer, including late relapse after early stage disease, de novo metastatic disease, discordant disease response, and disease refractory to treatment. Between 5 and 12 metastatic sites were collected at autopsy together with available primary tumours and longitudinal metastatic biopsies taken during life. Samples underwent paired tumour-normal whole exome sequencing and single nucleotide polymorphism (SNP) arrays. Subclonal architectures were inferred by jointly analysing all samples from each patient. Mutations were validated using high depth amplicon sequencing. Between cases, there were significant differences in mutational burden, driver mutations, mutational processes, and copy number variation. Within each case, we found dramatic heterogeneity in subclonal structure from primary to metastatic disease and between metastatic sites, such that no single lesion captured the breadth of disease. Metastatic cross-seeding was found in each case, and treatment drove subclonal diversification. Subclones displayed parallel evolution of treatment resistance in some cases and apparent augmentation of key oncogenic drivers as an alternative resistance mechanism. We also observed the role of mutational processes in subclonal evolution. Limitations of this study include the potential for bias introduced by joint analysis of formalin-fixed archival specimens with fresh specimens and the difficulties in resolving subclones with whole exome sequencing. Other alterations that could define subclones such as structural variants or epigenetic modifications were not assessed. Conclusions This study highlights various mechanisms that shape the genome of metastatic breast cancer and the value of studying advanced disease in detail. Treatment drives significant genomic heterogeneity in breast cancers which has implications for disease monitoring and treatment selection in the personalised medicine paradigm.
Cancer Discovery | 2017
Laurent Sansregret; James O. Patterson; Sally M. Dewhurst; Carlos López-García; André Koch; Nicholas McGranahan; William C. H. Chao; David J. Barry; Andrew Rowan; Rachael Instrell; Stuart Horswell; Michael Way; Michael Howell; Martin R. Singleton; René H. Medema; Paul Nurse; Mark Petronczki; Charles Swanton
Intercellular heterogeneity, exacerbated by chromosomal instability (CIN), fosters tumor heterogeneity and drug resistance. However, extreme CIN correlates with improved cancer outcome, suggesting that karyotypic diversity required to adapt to selection pressures might be balanced in tumors against the risk of excessive instability. Here, we used a functional genomics screen, genome editing, and pharmacologic approaches to identify CIN-survival factors in diploid cells. We find partial anaphase-promoting complex/cyclosome (APC/C) dysfunction lengthens mitosis, suppresses pharmacologically induced chromosome segregation errors, and reduces naturally occurring lagging chromosomes in cancer cell lines or following tetraploidization. APC/C impairment caused adaptation to MPS1 inhibitors, revealing a likely resistance mechanism to therapies targeting the spindle assembly checkpoint. Finally, CRISPR-mediated introduction of cancer somatic mutations in the APC/C subunit cancer driver gene CDC27 reduces chromosome segregation errors, whereas reversal of an APC/C subunit nonsense mutation increases CIN. Subtle variations in mitotic duration, determined by APC/C activity, influence the extent of CIN, allowing cancer cells to dynamically optimize fitness during tumor evolution.nnnSIGNIFICANCEnWe report a mechanism whereby cancers balance the evolutionary advantages associated with CIN against the fitness costs caused by excessive genome instability, providing insight into the consequence of CDC27 APC/C subunit driver mutations in cancer. Lengthening of mitosis through APC/C modulation may be a common mechanism of resistance to cancer therapeutics that increase chromosome segregation errors. Cancer Discov; 7(2); 218-33. ©2017 AACR.See related commentary by Burkard and Weaver, p. 134This article is highlighted in the In This Issue feature, p. 115.
Cell | 2018
Samra Turajlic; Hang Xu; Kevin Litchfield; Andrew Rowan; Tim Chambers; José I. López; David Nicol; Tim O’Brien; James Larkin; Stuart Horswell; Mark Stares; Lewis Au; Mariam Jamal-Hanjani; Ben Challacombe; Ashish Chandra; Steve Hazell; Claudia Eichler-Jonsson; Aspasia Soultati; Simon Chowdhury; Sarah Rudman; Joanna Lynch; Archana Fernando; Gordon Stamp; Emma Nye; Faiz Jabbar; Lavinia Spain; Sharanpreet Lall; Rosa Guarch; Mary Falzon; Ian Proctor
Summary Clear-cell renal cell carcinoma (ccRCC) exhibits a broad range of metastatic phenotypes that have not been systematically studied to date. Here, we analyzed 575 primary and 335 metastatic biopsies across 100 patients with metastatic ccRCC, including two cases sampledat post-mortem. Metastatic competence was afforded by chromosome complexity, and we identify 9p loss as a highly selected event driving metastasis and ccRCC-related mortality (p = 0.0014). Distinct patterns of metastatic dissemination were observed, including rapid progression to multiple tissue sites seeded by primary tumors of monoclonal structure. By contrast, we observed attenuated progression in cases characterized by high primary tumor heterogeneity, with metastatic competence acquired gradually and initial progression to solitary metastasis. Finally, we observed early divergence of primitive ancestral clones and protracted latency of up to two decades as a feature of pancreatic metastases.
Cell | 2018
Samra Turajlic; Hang Xu; Kevin Litchfield; Andrew Rowan; Stuart Horswell; Tim Chambers; Tim O’Brien; José I. López; Thomas B.K. Watkins; David Nicol; Mark Stares; Ben Challacombe; Steve Hazell; Ashish Chandra; Thomas J. Mitchell; Lewis Au; Claudia Eichler-Jonsson; Faiz Jabbar; Aspasia Soultati; Simon Chowdhury; Sarah Rudman; Joanna Lynch; Archana Fernando; Gordon Stamp; Emma Nye; Aengus Stewart; Wei Xing; Jonathan C. Smith; Mickael Escudero; Adam Huffman
Summary The evolutionary features of clear-cell renal cell carcinoma (ccRCC) have not been systematically studied to date. We analyzed 1,206 primary tumor regions from 101 patients recruited into the multi-center prospective study, TRACERx Renal. We observe up to 30 driver events per tumor and show that subclonal diversification is associated with known prognostic parameters. By resolving the patterns of driver event ordering, co-occurrence, and mutual exclusivity at clone level, we show the deterministic nature of clonal evolution. ccRCC can be grouped into seven evolutionary subtypes, ranging from tumors characterized by early fixation of multiple mutational and copy number drivers and rapid metastases to highly branched tumors with >10 subclonal drivers and extensive parallel evolution associated with attenuated progression. We identify genetic diversity and chromosomal complexity as determinants of patient outcome. Our insights reconcile the variable clinical behavior of ccRCC and suggest evolutionary potential as a biomarker for both intervention and surveillance.