Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew S. Fox is active.

Publication


Featured researches published by Andrew S. Fox.


Nature Reviews Neuroscience | 2011

The Integration of Negative Affect, Pain, and Cognitive Control in the Cingulate Cortex

Alexander J. Shackman; Tim V. Salomons; Heleen A. Slagter; Andrew S. Fox; Jameel J. Winter; Richard J. Davidson

It has been argued that emotion, pain and cognitive control are functionally segregated in distinct subdivisions of the cingulate cortex. However, recent observations encourage a fundamentally different view. Imaging studies demonstrate that negative affect, pain and cognitive control activate an overlapping region of the dorsal cingulate — the anterior midcingulate cortex (aMCC). Anatomical studies reveal that the aMCC constitutes a hub where information about reinforcers can be linked to motor centres responsible for expressing affect and executing goal-directed behaviour. Computational modelling and other kinds of evidence suggest that this intimacy reflects control processes that are common to all three domains. These observations compel a reconsideration of the dorsal cingulates contribution to negative affect and pain.


Molecular Psychiatry | 2004

Functional but not structural subgenual prefrontal cortex abnormalities in melancholia

Diego A. Pizzagalli; Terrence R. Oakes; Andrew S. Fox; Moo K. Chung; Christine L. Larson; Heather C. Abercrombie; Stacey M. Schaefer; Ruth M. Benca; Richard J. Davidson

Major depression is a heterogeneous condition, and the search for neural correlates specific to clinically defined subtypes has been inconclusive. Theoretical considerations implicate frontostriatal, particularly subgenual prefrontal cortex (PFC), dysfunction in the pathophysiology of melancholia—a subtype of depression characterized by anhedonia—but no empirical evidence has been found yet for such a link. To test the hypothesis that melancholic, but not nonmelancholic depression, is associated with the subgenual PFC impairment, concurrent measurement of brain electrical (electroencephalogram, EEG) and metabolic (positron emission tomography, PET) activity were obtained in 38 unmedicated subjects with DSM-IV major depressive disorder (20 melancholic, 18 nonmelancholic subjects), and 18 comparison subjects. EEG data were analyzed with a tomographic source localization method that computed the cortical three-dimensional distribution of current density for standard frequency bands, allowing voxelwise correlations between the EEG and PET data. Voxel-based morphometry analyses of structural magnetic resonance imaging (MRI) data were performed to assess potential structural abnormalities in melancholia. Melancholia was associated with reduced activity in the subgenual PFC (Brodmann area 25), manifested by increased inhibitory delta activity (1.5–6.0 Hz) and decreased glucose metabolism, which themselves were inversely correlated. Following antidepressant treatment, depressed subjects with the largest reductions in depression severity showed the lowest post-treatment subgenual PFC delta activity. Analyses of structural MRI revealed no group differences in the subgenual PFC, but in melancholic subjects, a negative correlation between gray matter density and age emerged. Based on preclinical evidence, we suggest that subgenual PFC dysfunction in melancholia may be associated with blunted hedonic response and exaggerated stress responsiveness.


NeuroImage | 2004

Orbitofrontal cortex tracks positive mood in mothers viewing pictures of their newborn infants

Jack B. Nitschke; Eric E. Nelson; Brett D. Rusch; Andrew S. Fox; Terrence R. Oakes; Richard J. Davidson

Positive affect elicited in a mother toward her newborn infant may be one of the most powerful and evolutionarily preserved forms of positive affect in the emotional landscape of human behavior. This study examined the neurobiology of this form of positive emotion and in so doing, sought to overcome the difficulty of eliciting robust positive affect in response to visual stimuli in the physiological laboratory. Six primiparous human mothers with no indications of postpartum depression brought their infants into the laboratory for a photo shoot. Approximately 6 weeks later, they viewed photographs of their infant, another infant, and adult faces during acquisition of functional magnetic resonance images (fMRI). Mothers exhibited bilateral activation of the orbitofrontal cortex (OFC) while viewing pictures of their own versus unfamiliar infants. While in the scanner, mothers rated their mood more positively for pictures of their own infants than for unfamiliar infants, adults, or at baseline. The orbitofrontal activation correlated positively with pleasant mood ratings. In contrast, areas of visual cortex that also discriminated between own and unfamiliar infants were unrelated to mood ratings. These data implicate the orbitofrontal cortex in a mothers affective responses to her infant, a form of positive emotion that has received scant attention in prior human neurobiological studies. Furthermore, individual variations in orbitofrontal activation to infant stimuli may reflect an important dimension of maternal attachment.


Human Brain Mapping | 2006

Motion correction and the use of motion covariates in multiple-subject fMRI analysis

Tom Johnstone; Kathleen S. Ores Walsh; Larry L. Greischar; Andrew L. Alexander; Andrew S. Fox; Richard J. Davidson; Terrence R. Oakes

The impact of using motion estimates as covariates of no interest was examined in general linear modeling (GLM) of both block design and rapid event‐related functional magnetic resonance imaging (fMRI) data. The purpose of motion correction is to identify and eliminate artifacts caused by task‐correlated motion while maximizing sensitivity to true activations. To optimize this process, a combination of motion correction approaches was applied to data from 33 subjects performing both a block‐design and an event‐related fMRI experiment, including analysis: (1) without motion correction; (2) with motion correction alone; (3) with motion‐corrected data and motion covariates included in the GLM; and (4) with non–motion‐corrected data and motion covariates included in the GLM. Inclusion of covariates was found to be generally useful for increasing the sensitivity of GLM results in the analysis of event‐related data. When motion parameters were included in the GLM for event‐related data, it made little difference if motion correction was actually applied to the data. For the block design, inclusion of motion covariates had a deleterious impact on GLM sensitivity when even moderate correlation existed between motion and the experimental design. Based on these results, we present a general strategy for block designs, event‐related designs, and hybrid designs to identify and eliminate probable motion artifacts while maximizing sensitivity to true activations. Hum. Brain Mapp, 2006.


Psychological Science | 2013

Compassion Training Alters Altruism and Neural Responses to Suffering

Helen Y. Weng; Andrew S. Fox; Alexander J. Shackman; Diane E. Stodola; Jessica Z. K. Caldwell; Matthew C. Olson; Gregory M. Rogers; Richard J. Davidson

Compassion is a key motivator of altruistic behavior, but little is known about individuals’ capacity to cultivate compassion through training. We examined whether compassion may be systematically trained by testing whether (a) short-term compassion training increases altruistic behavior and (b) individual differences in altruism are associated with training-induced changes in neural responses to suffering. In healthy adults, we found that compassion training increased altruistic redistribution of funds to a victim encountered outside of the training context. Furthermore, increased altruistic behavior after compassion training was associated with altered activation in brain regions implicated in social cognition and emotion regulation, including the inferior parietal cortex and dorsolateral prefrontal cortex (DLPFC), and in DLPFC connectivity with the nucleus accumbens. These results suggest that compassion can be cultivated with training and that greater altruistic behavior may emerge from increased engagement of neural systems implicated in understanding the suffering of other people, executive and emotional control, and reward processing.


Nature | 2010

Amygdalar and hippocampal substrates of anxious temperament differ in their heritability

Jonathan A. Oler; Andrew S. Fox; Steven E. Shelton; Jeffrey Rogers; Thomas D. Dyer; Richard J. Davidson; Wendy Shelledy; Terrence R. Oakes; John Blangero; Ned H. Kalin

Anxious temperament (AT) in human and non-human primates is a trait-like phenotype evident early in life that is characterized by increased behavioural and physiological reactivity to mildly threatening stimuli. Studies in children demonstrate that AT is an important risk factor for the later development of anxiety disorders, depression and comorbid substance abuse. Despite its importance as an early predictor of psychopathology, little is known about the factors that predispose vulnerable children to develop AT and the brain systems that underlie its expression. To characterize the neural circuitry associated with AT and the extent to which the function of this circuit is heritable, we studied a large sample of rhesus monkeys phenotyped for AT. Using 238 young monkeys from a multigenerational single-family pedigree, we simultaneously assessed brain metabolic activity and AT while monkeys were exposed to the relevant ethological condition that elicits the phenotype. High-resolution 18F-labelled deoxyglucose positron-emission tomography (FDG–PET) was selected as the imaging modality because it provides semi-quantitative indices of absolute glucose metabolic rate, allows for simultaneous measurement of behaviour and brain activity, and has a time course suited for assessing temperament-associated sustained brain responses. Here we demonstrate that the central nucleus region of the amygdala and the anterior hippocampus are key components of the neural circuit predictive of AT. We also show significant heritability of the AT phenotype by using quantitative genetic analysis. Additionally, using voxelwise analyses, we reveal significant heritability of metabolic activity in AT-associated hippocampal regions. However, activity in the amygdala region predictive of AT is not significantly heritable. Furthermore, the heritabilities of the hippocampal and amygdala regions significantly differ from each other. Even though these structures are closely linked, the results suggest differential influences of genes and environment on how these brain regions mediate AT and the ongoing risk of developing anxiety and depression.


Biological Psychiatry | 2005

Brain Regions Associated with the Expression and Contextual Regulation of Anxiety in Primates

Ned H. Kalin; Steven E. Shelton; Andrew S. Fox; Terrence R. Oakes; Richard J. Davidson

BACKGROUND A key to successful adaptation is the ability to regulate emotional responses in relation to changing environmental demands or contexts. METHODS High-resolution PET 18fluoro-deoxyglucose (FDG) scanning in rhesus monkeys was performed during two contexts (alone, and human intruder with no eye contact) during which the duration of anxiety related freezing behavior was assessed. Correlations between individual differences in freezing duration and brain activity were performed for each of the two conditions, as well as for the contextual regulation between the two conditions. RESULTS In both conditions, activity in the basal forebrain, including the bed nucleus of the stria terminalis and the nucleus accumbens were correlated with individual differences in freezing duration. In contrast, individual differences in the ability to regulate freezing behavior between contexts were correlated with activity in the dorsal anterior cingulate cortex, the thalamus and the dorsal raphe nucleus. CONCLUSIONS These findings demonstrate differences in the neural circuitry mediating the expression compared to the contextual regulation of freezing behavior. These findings are relevant since altered regulatory processes may underlie anxiety disorders.


PLOS ONE | 2008

Trait-like brain activity during adolescence predicts anxious temperament in primates.

Andrew S. Fox; Steven E. Shelton; Terrence R. Oakes; Richard J. Davidson; Ned H. Kalin

Early theorists (Freud and Darwin) speculated that extremely shy children, or those with anxious temperament, were likely to have anxiety problems as adults. More recent studies demonstrate that these children have heightened responses to potentially threatening situations reacting with intense defensive responses that are characterized by behavioral inhibition (BI) (inhibited motor behavior and decreased vocalizations) and physiological arousal. Confirming the earlier impressions, data now demonstrate that children with this disposition are at increased risk to develop anxiety, depression, and comorbid substance abuse. Additional key features of anxious temperament are that it appears at a young age, it is a stable characteristic of individuals, and even in non-threatening environments it is associated with increased psychic anxiety and somatic tension. To understand the neural underpinnings of anxious temperament, we performed imaging studies with 18-fluoro-deoxyglucose (FDG) high-resolution Positron Emission Tomography (PET) in young rhesus monkeys. Rhesus monkeys were used because they provide a well validated model of anxious temperament for studies that cannot be performed in human children. Imaging the same animal in stressful and secure contexts, we examined the relation between regional metabolic brain activity and a trait-like measure of anxious temperament that encompasses measures of BI and pituitary-adrenal reactivity. Regardless of context, results demonstrated a trait-like pattern of brain activity (amygdala, bed nucleus of stria terminalis, hippocampus, and periaqueductal gray) that is predictive of individual phenotypic differences. Importantly, individuals with extreme anxious temperament also displayed increased activity of this circuit when assessed in the security of their home environment. These findings suggest that increased activity of this circuit early in life mediates the childhood temperamental risk to develop anxiety and depression. In addition, the findings provide an explanation for why individuals with anxious temperament have difficulty relaxing in environments that others perceive as non-stressful.


Molecular Psychiatry | 2008

The serotonin transporter genotype is associated with intermediate brain phenotypes that depend on the context of eliciting stressor

Ned H. Kalin; Steven E. Shelton; Andrew S. Fox; Jeffrey Rogers; Terrence R. Oakes; Richard J. Davidson

A variant allele in the promoter region of the serotonin transporter gene, SLC6A4, the s allele, is associated with increased vulnerability to develop anxiety-related traits and depression. Furthermore, functional magnetic resonance imaging (fMRI) studies reveal that s carriers have increased amygdala reactivity in response to aversive stimuli, which is thought to be an intermediate phenotype mediating the influences of the s allele on emotionality. We used high-resolution microPET [18F]fluoro-2-deoxy-D-glucose (FDG) scanning to assess regional brain metabolic activity in rhesus monkeys to further explore s allele-related intermediate phenotypes. Rhesus monkeys provide an excellent model to understand mechanisms underlying human anxiety, and FDG microPET allows for the assessment of brain activity associated with naturalistic environments outside the scanner. During FDG uptake, monkeys were exposed to different ethologically relevant stressful situations (relocation and threat) as well as to the less stressful familiar environment of their home cage. The s carriers displayed increased orbitofrontal cortex activity in response to both relocation and threat. However, during relocation they displayed increased amygdala reactivity and in response to threat they displayed increased reactivity of the bed nucleus of the stria terminalis. No increase in the activity of any of these regions occurred when the animals were administered FDG in their home cages. These findings demonstrate context-dependent intermediate phenotypes in s carriers that provide a framework for understanding the mechanisms underlying the vulnerabilities of s-allele carriers exposed to different types of stressors.


Trends in Neurosciences | 2015

Extending the amygdala in theories of threat processing

Andrew S. Fox; Jonathan A. Oler; Do P. M. Tromp; Julie L. Fudge; Ned H. Kalin

The central extended amygdala is an evolutionarily conserved set of interconnected brain regions that play an important role in threat processing to promote survival. Two core components of the central extended amygdala, the central nucleus of the amygdala (Ce) and the lateral bed nucleus of the stria terminalis (BST) are highly similar regions that serve complimentary roles by integrating fear- and anxiety-relevant information. Survival depends on the ability of the central extended amygdala to rapidly integrate and respond to threats that vary in their immediacy, proximity, and characteristics. Future studies will benefit from understanding alterations in central extended amygdala function in relation to stress-related psychopathology.

Collaboration


Dive into the Andrew S. Fox's collaboration.

Top Co-Authors

Avatar

Ned H. Kalin

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Richard J. Davidson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jonathan A. Oler

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Steven E. Shelton

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Terrence R. Oakes

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Andrew L. Alexander

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Bradley T. Christian

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Dhanabalan Murali

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Do P. M. Tromp

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Patrick H. Roseboom

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge