Andrew S. French
Dalhousie University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrew S. French.
Trends in Neurosciences | 1996
Mikko Juusola; Andrew S. French; R. O. Uusitalo; Matti Weckström
Many neurons use graded membrane-potential changes, instead of action potentials, to transmit information. Traditional synaptic models feature discontinuous transmitter release by presynaptic action potentials, but this is not true for synapses between graded-potential neurons. In addition to graded and continuous transmitter release, they have multiple active zones, ribbon formations and L-type Ca2+ channels. These differences are probably linked to the high rate of vesicle fusion required for continuous transmitter release. Early stages of sensory systems provide some of the best characterized graded-potential neurons, and recent work on these systems suggests that modification of synaptic transmission by adaptation is a powerful feature of graded synapses.
Neuron | 1997
Mikko Juusola; Andrew S. French
Most sensory systems encode external signals into action potentials for transmission to the central nervous system, but little is known about the cost or efficiency of this encoding. We measured the information capacity at three stages of encoding in the neurons of a spider slit-sense mechanoreceptor organ. For the receptor current under voltage clamp, the capacity was approximately 1400 bits/s, but when the neuron was allowed to generate a receptor potential, nonlinear membrane processes improved the capacity to >2000 bits/s. Finally, when action potentials were produced, the capacity dropped to approximately 200 bits/s, or approximately 14% of the receptor current capacity. These measurements provide a quantitative estimation of the cost of encoding analog signals into action potentials.
Biological Cybernetics | 2001
Andrew S. French; Ulli Höger; Shin-ichi Sekizawa; Päivi H. Torkkeli
Abstract. Pseudorandom white-noise stimulation followed by direct spectral estimation was used to obtain linear frequency response and coherence functions from paired, but dynamically different, spider mechanosensory neurons. The dynamic properties of the two neuron types were similar with either mechanical or electrical stimulation, showing that action potential encoding dominates the dynamics. Phase-lag data indicated that action potential initiation occurs more rapidly during mechanical stimulation, probably in the distal sensory dendrites. Total information capacity, calculated from coherence, as well as information per action potential, were both similar in the two types of neurons, and similar to the few available estimates from other spiking neurons. However, information capacity and information per action potential both depended strongly on neuronal firing rate, which has not been reported before.
Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 2002
Andrew S. French; Päivi H. Torkkeli; Ernst-August Seyfarth
Abstract. This review focuses on the structure and function of a single mechanoreceptor organ in the cuticle of spiders. Knowledge emerging from the study of this organ promises to yield general principles that can be applied to mechanosensation in a wide range of animal systems. The lyriform slit sense organ on the antero-lateral leg patella of the spider Cupiennius salei is unusual in possessing large sensory neurons, whose cell bodies are close to the sites of sensory transduction, and accessible to intracellular recording during mechanotransduction. This situation, combined with recent technical developments, has made it possible to observe and experiment with all the major stages of mechanosensation. Important findings include the approximate size, number and ionic selectivity of the ion channels responsible for mechanotransduction, the types of voltage-activated ion channels responsible for action potential encoding, and the mechanisms controlling the dynamic properties of transduction and encoding. Most recently, a complex efferent system for peripheral modulation of mechanosensation has been discovered and partially characterized. Much remains to be learned about mechanosensation, but the lyriform slit sense organ system continues to offer important opportunities to advance our understanding of this crucial sense.
The Journal of Neuroscience | 2005
Alexandre Widmer; Ulli Höger; Shannon Meisner; Andrew S. French; Päivi H. Torkkeli
Octopamine is a chemical relative of noradrenaline providing analogous neurohumoral control of diverse invertebrate physiological processes. There is also evidence for direct octopaminergic innervation of some insect peripheral tissues. Here, we show that spider peripheral mechanoreceptors are innervated by octopamine-containing efferents. The mechanosensory neurons have octopamine receptors colocalized with synapsin labeling in the efferent fibers. In addition, octopamine enhances the electrical response of the sensory neurons to mechanical stimulation. Spider peripheral mechanosensilla receive extensive efferent innervation. Many efferent fibers in the legs of Cupiennius salei are GABAergic, providing inhibitory control of sensory neurons, but there is also evidence for other neurotransmitters. We used antibody labeling to show that some efferents contain octopamine and that octopamine receptors are concentrated on the axon hillocks and proximal soma regions of all mechanosensory neurons in the spider leg. Synaptic vesicles in efferent neurons were concentrated in similar areas. Octopamine, or its precursor tyramine, increased responses of mechanically stimulated filiform (trichobothria) leg hairs. This effect was blocked by the octopamine antagonist phentolamine. The octopamine-induced modulation was mimicked by 8-Br-cAMP, a cAMP analog, and blocked by Rp-cAMPS, a protein kinase A inhibitor, indicating that spider octopamine receptors activate adenylate cyclase and increase cAMP concentration. Frequency response analysis showed that octopamine increased the sensitivity of the trichobothria neurons over a broad frequency range. Thus, the major effect of octopamine is to increase its overall sensitivity to wind-borne signals from sources such as flying insect prey or predators.
European Journal of Neuroscience | 2002
Izabela Panek; Andrew S. French; Ernst-August Seyfarth; Shin-ichi Sekizawa; Päivi H. Torkkeli
Spider mechanosensory neurons receive an extensive network of efferent synapses onto their sensory dendrites, somata and distal axonal regions. The function of these synapses is unknown. Peripheral synapses are also found on crustacean stretch‐receptor neurons but not on mechanosensory afferents of other species, although inhibitory GABAergic synapses are a common feature of centrally located axon terminals. Here we investigated the effects of GABA receptor agonists and antagonists on one group of spider mechanosensory neurons, the slit sense organ VS‐3, which are accessible to current‐ and voltage‐clamp recordings. Bath application of GABA activated an inward current that depolarized the membrane and increased the membrane conductance leading to impulse inhibition. VS‐3 neuron GABA receptors were activated by muscimol and inhibited by picrotoxin but not bicuculline, and their dose–response relationship had an EC50 of 103.4 µm, features typical for insect ionotropic GABA receptors. Voltage‐ and current‐clamp analysis confirmed that, while the Na+ channel inhibition resulting from depolarization can lead to impulse inhibition, the increase in membrane conductance (i.e. ‘shunting’) completely inhibited impulse propagation. This result argues against previous findings from other preparations that GABA‐mediated inhibition is caused by a depolarization that inactivates Na+ conductance, and it supports those findings that assign this role to membrane shunting. Our results show that GABA can rapidly and selectively inhibit specific mechanoreceptors in the periphery. This type of peripheral inhibition may provide spiders with a mechanism for distinguishing between signals from potential prey, predators or mates, and responding with appropriate behaviour to each signal.
Annals of Biomedical Engineering | 2001
Andrew S. French; Shin-ichi Sekizawa; Ulli Höger; Päivi H. Torkkeli
AbstractThe nonlinear dynamic properties of action potential encoding were studied in mechanosensory neurons innervating the slits of a slit-sense organ in the tropical wandering spider, Cupiennius salei. The organ contains two types of neurons that are morphologically similar but have different dynamic properties. Type A neurons produce only one or two action potentials in response to a mechanical or electrical stimulus of any suprathreshold amplitude, while type B neurons can fire prolonged bursts of action potentials in response to similar stimuli. Neurons were stimulated with pseudorandomly modulated intracellular current while recording the resultant fluctuations in membrane potential and action potentials. A parallel cascade method was used to estimate a third-order Volterra series to describe the nonlinear dynamic relationship between membrane potential and action potentials. Kernels measured for the two types of neurons had reproducible forms that showed differences between the two neuron types. The measured kernels were able to predict the responses of the neurons to novel pseudorandomly modulated inputs with reasonable fidelity. However, the Volterra series did not adequately predict the difference in responses to step depolarizations.
European Journal of Neuroscience | 2004
Ewald Gingl; Andrew S. French; Izabela Panek; Shannon Meisner; Päivi H. Torkkeli
GABAergic inhibition of mechanosensory afferent axon terminals is a widespread phenomenon in vertebrates and invertebrates. Spider mechanoreceptor neurons receive efferent innervation on their peripherally located axons, somata and sensory dendrites, and the dendrites have recently been shown to be excitable. Excitability of the spider sensory neurons is inhibited by muscimol and GABA, agonists of ionotropic GABA receptors. Here we asked where in the neurons this inhibition occurs. We found no evidence for inhibition of action potentials in the sensory dendrites, but axonal action potentials were rapidly suppressed by both agonists. Earlier work showed that metabotropic GABAB receptors are located on the dendrites and distal somata of the spider sensory neurons, where they modulate voltage‐activated conductances and may provide slower, prolonged inhibition. Therefore, GABA released from single peripheral efferents may activate both ionotropic and metabotropic receptor types, providing rapid suppression of axonal activity followed by slower inhibition that eventually prevents action potential initiation in the distal dendrites.
Biochimica et Biophysica Acta | 1997
F.P.Gillian Ridge; Marek Duszyk; Andrew S. French
A large conductance, Ca2+-activated K+ channel in a human lung epithelial cell line (A549) was identified using the single channel patch clamp technique. Channel conductance was 242 +/- 33 pS (n = 67) in symmetrical KCl (140 mM). The channel was activated by membrane depolarization and increased cytosolic Ca2+. High selectivity was observed for K+ over Rb+(0.49) > Cs+(0.14) > Na+(0.09). Open probability was significantly decreased by Ba2+ (5 mM) and quinidine (5 mM) to either surface, but TEA (5 mM) was only effective when added to the external surface. All effects were reversible. Increasing cytosolic Ca2+ concentration from 10(-7) to 10(-6) M caused an increase in open probability from near zero to fully activated. ATP decreased open probability at approximately 2 mM, but the effect was variable. The channel was almost always observed together with a smaller conductance channel, although they could both be seen individually. We conclude that A549 cells contain large conductance Ca2+-activated K+ channels which could explain a major fraction of the K+ conductance in human alveolar epithelial membranes.
Journal of Neurophysiology | 2009
Keram Pfeiffer; Izabela Panek; Ulli Höger; Andrew S. French; Päivi H. Torkkeli
gamma-Aminobutyric acid type A (GABA(A)) receptor activation inhibits many primary afferent neurons by depolarization and increased membrane conductance. Deterministic (step and sinusoidal) functions are commonly used as stimuli to test such inhibition. We found that when the VS-3 mechanosensory neurons innervating the spider lyriform slit-sense organ were stimulated by randomly varying white-noise mechanical or electrical signals, their responses to GABA(A) receptor agonists were more complex than the inhibition observed during deterministic stimulation. Instead, there was rapid excitation, then brief inhibition, followed by long-lasting excitation. During the final excitatory phase, VS-3 neuron sensitivity to high-frequency signals increased selectively and their linear information capacity also increased. Using experimental and simulation approaches we found that the excitatory effect could also be achieved by depolarizing the neurons without GABA application and that excitation could override the inhibitory effect produced by increased membrane conductance (shunting). When the VS-3 neurons were exposed to bumetanide, an antagonist of the Cl(-) transporter NKCC1, the GABA-induced depolarization decreased without any change in firing rate, suggesting that the effects of GABA can be maintained for a long time without additional Cl(-) influx. Our results show that the VS-3 neurons response to GABA depends profoundly on the type of signals the neuron is conveying while the transmitter binds to its receptors.