Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew S. Friedman is active.

Publication


Featured researches published by Andrew S. Friedman.


The Astrophysical Journal | 2009

FROM SHOCK BREAKOUT TO PEAK AND BEYOND: EXTENSIVE PANCHROMATIC OBSERVATIONS OF THE TYPE Ib SUPERNOVA 2008D ASSOCIATED WITH SWIFT X-RAY TRANSIENT 080109

Maryam Modjaz; Weidong Li; N. Butler; Ryan Chornock; Daniel A. Perley; Stephane Blondin; J. S. Bloom; A. V. Filippenko; Robert P. Kirshner; Daniel Kocevski; Dovi Poznanski; Malcolm Stuart Hicken; Ryan J. Foley; Guy S. Stringfellow; Perry L. Berlind; D. Barrado y Navascués; Cullen H. Blake; Herve Bouy; Warren R. Brown; Peter M. Challis; H.-. W. Chen; W. H. de Vries; P. Dufour; Emilio E. Falco; Andrew S. Friedman; Mohan Ganeshalingam; Peter Marcus Garnavich; B. Holden; G. D. Illingworth; Nicholas Lee

We present extensive early photometric (ultraviolet through near-infrared) and spectroscopic (optical and near-infrared) data on supernova (SN) 2008D as well as X-ray data analysis on the associated Swift X-ray transient (XRT) 080109. Our data span a time range of 5 hr before the detection of the X-ray transient to 150days after its detection, and a detailed analysis allowed us to derive constraints on the nature of the SN and its progenitor; throughout we draw comparisons with results presented in the literature and find several key aspects that differ. We show that the X-ray spectrum of XRT 080109 can be fit equally well by an absorbed power law or a superposition of about equal parts of both power law and blackbody. Our data first established that SN 2008D is a spectroscopically normal SN Ib (i.e., showing conspicuous He lines) and showed that SN 2008D had a relatively long rise time of 18days and a modest optical peak luminosity. The early-time light curves of the SN are dominated by a cooling stellar envelope (for Δt0.1-4days, most pronounced in the blue bands) followed by 56Ni decay. We construct a reliable measurement of the bolometric output for this stripped-envelope SN, and, combined with estimates of E K and M ej from the literature, estimate the stellar radius R ⊙ of its probable Wolf-Rayet progenitor. According to the model of Waxman etal. and Chevalier & Fransson, we derive R W07⊙ = 1.2 0.7R ⊙ and R CF08⊙ = 12 7 R ⊙, respectively; the latter being more in line with typical WN stars. Spectra obtained at three and four months after maximum light show double-peaked oxygen lines that we associate with departures from spherical symmetry, as has been suggested for the inner ejecta of a number of SN Ib cores.


The Astronomical Journal | 2009

SN 2008ha: AN EXTREMELY LOW LUMINOSITY AND EXCEPTIONALLY LOW ENERGY SUPERNOVA

Ryan J. Foley; Ryan Chornock; Alexei V. Filippenko; Mohan Ganeshalingam; Robert P. Kirshner; Weidong Li; S. Bradley Cenko; Peter J. Challis; Andrew S. Friedman; Maryam Modjaz; Jeffrey M. Silverman; W. Michael Wood-Vasey

We present ultraviolet, optical, and near-infrared photometry as well as optical spectra of the peculiar supernova (SN) 2008ha. SN?2008ha had a very low peak luminosity, reaching only?MV = ?14.2?mag, and low line velocities of only ~2000?km s?1 near maximum brightness, indicating a very small kinetic energy per unit mass of ejecta. Spectroscopically, SN?2008ha is a member of the SN?2002cx-like class of SNe, a peculiar subclass of SNe?Ia; however, SN?2008ha is the most extreme member, being significantly fainter and having lower line velocities than the typical member, which is already ~2?mag fainter and has line velocities ~5000?km s?1 smaller (near maximum brightness) than a normal SN?Ia. SN?2008ha had a remarkably short rise time of only ~10 days, significantly shorter than either SN?2002cx-like objects (~15 days) or normal SNe?Ia (~19.5 days). The bolometric light curve of SN?2008ha indicates that SN?2008ha peaked at L peak = (9.5 ? 1.4) ? 1040 erg s?1, making SN?2008ha perhaps the least luminous SN ever observed. From its peak luminosity and rise time, we infer that SN?2008ha generated (3.0 ? 0.9) ? 10?3 M ? of 56Ni, had a kinetic energy of ~2 ? 1048 erg, and ejected 0.15?M ? of material. The host galaxy of SN?2008ha has a luminosity, star formation rate, and metallicity similar to those of the Large?magellanic Cloud. We classify three new (and one potential) members of the SN?2002cx-like class, expanding the sample to 14 (and one potential) members. The host-galaxy morphology distribution of the class is consistent with that of SNe?Ia, Ib, Ic, and II. Several models for generating low-luminosity SNe can explain the observations of SN?2008ha; however, if a single model is to describe all SN?2002cx-like objects, deflagration of carbon-oxygen white dwarfs, with SN?2008ha being a partial deflagration and not unbinding the progenitor star, is preferred. The rate of SN?2008ha-like events is ~10% of the SN?Ia rate, and in the upcoming era of transient surveys, several thousand similar objects may be discovered, suggesting that SN?2008ha may be the tip of a low-luminosity transient iceberg.


The Astrophysical Journal | 2013

A PANCHROMATIC VIEW OF THE RESTLESS SN 2009ip REVEALS THE EXPLOSIVE EJECTION OF A MASSIVE STAR ENVELOPE

R. Margutti; D. Milisavljevic; Alicia M. Soderberg; Ryan Chornock; B. A. Zauderer; Kohta Murase; C. Guidorzi; Nathan Edward Sanders; Paul Kuin; Claes Fransson; Emily M. Levesque; P. Chandra; Edo Berger; Federica B. Bianco; Peter J. Brown; P. Challis; Emmanouil Chatzopoulos; C. C. Cheung; Changsu Choi; Laura Chomiuk; N. N. Chugai; Carlos Contreras; Maria Rebecca Drout; Robert A. Fesen; Ryan J. Foley; William. Fong; Andrew S. Friedman; Christa Gall; N. Gehrels; J. Hjorth

The double explosion of SN 2009ip in 2012 raises questions about our understanding of the late stages of massive star evolution. Here we present a comprehensive study of SN 2009ip during its remarkable rebrightenings. High-cadence photometric and spectroscopic observations from the GeV to the radio band obtained from a variety of ground-based and space facilities (including the Very Large Array, Swift, Fermi, Hubble Space Telescope, and XMM) constrain SN 2009ip to be a low energy (E similar to 1050 erg for an ejecta mass similar to 0.5 M-circle dot) and asymmetric explosion in a complex medium shaped by multiple eruptions of the restless progenitor star. Most of the energy is radiated as a result of the shock breaking out through a dense shell of material located at similar to 5 x 10(14) cm with M similar to 0.1 M-circle dot, ejected by the precursor outburst similar to 40 days before the major explosion. We interpret the NIR excess of emission as signature of material located further out, the origin of which has to be connected with documented mass-loss episodes in the previous years. Our modeling predicts bright neutrino emission associated with the shock break-out if the cosmic-ray energy is comparable to the radiated energy. We connect this phenomenology with the explosive ejection of the outer layers of the massive progenitor star, which later interacted with material deposited in the surroundings by previous eruptions. Future observations will reveal if the massive luminous progenitor star survived. Irrespective of whether the explosion was terminal, SN 2009ip brought to light the existence of new channels for sustained episodic mass loss, the physical origin of which has yet to be identified.


The Astrophysical Journal | 2009

The Golden Standard Type Ia Supernova 2005cf: Observations from the Ultraviolet to the Near-Infrared Wavebands

Xiaofeng Wang; Weidong Li; A. V. Filippenko; Ryan J. Foley; Robert P. Kirshner; M. Modjaz; J. S. Bloom; Peter J. Brown; D. Carter; Andrew S. Friedman; Avishay Gal-Yam; Mohan Ganeshalingam; Malcolm Stuart Hicken; Kevin Krisciunas; Peter A. Milne; Jeffrey M. Silverman; Nicholas B. Suntzeff; W. M. Wood-Vasey; S. B. Cenko; Peter M. Challis; Derek B. Fox; David Kirkman; J. Li; Ti-Pei Li; M. Malkan; M. R. Moore; David B. Reitzel; Robert Michael Rich; F. J. D. Serduke; Ren-Cheng Shang

We present extensive photometry at ultraviolet (UV), optical, and near-infrared (NIR) wavelengths, as well as dense sampling of optical spectra, for the normal Type Ia supernova (SN Ia) 2005cf. The optical photometry, performed at eight different telescopes, shows a 1σ scatter of ≾0.03 mag after proper corrections for the instrument responses. From the well-sampled light curves, we find that SN 2005cf reached a B-band maximum at 13.63 ± 0.02 mag, with an observed luminosity decline rate Δm _(15)(B) = 1.05 ± 0.03 mag. The correlations between the decline rate and various color indexes, recalibrated on the basis of an expanded SN Ia sample, yield a consistent estimate for the host-galaxy reddening of SN 2005cf, E(B – V)_(host) = 0.10 ± 0.03 mag. The UV photometry was obtained with the Hubble Space Telescope and the Swift Ultraviolet/Optical Telescope, and the results match each other to within 0.1-0.2 mag. The UV light curves show similar evolution to the broadband U, with an exception in the 2000-2500 A spectral range (corresponding to the F220W/uvm2 filters), where the light curve appears broader and much fainter than that on either side (likely owing to the intrinsic spectral evolution). Combining the UV data with the ground-based optical and NIR data, we establish the generic UV-optical-NIR bolometric light curve for SN 2005cf and derive the bolometric corrections in the absence of UV and/or NIR data. The overall spectral evolution of SN 2005cf is similar to that of a normal SN Ia, but with variety in the strength and profile of the main feature lines. The spectra at early times displayed strong, high-velocity (HV) features in the Ca II H&K doublet and NIR triplet, which were distinctly detached from the photosphere (v ≈ 10,000 km s^(–1)) at a velocity ranging from 20,000 to 25,000 km s^(–1). One interesting feature is the flat-bottomed absorption observed near 6000 A in the earliest spectrum, which rapidly evolved into a triangular shape and then became a normal Si II λ6355 absorption profile at about one week before maximum brightness. This premaximum spectral evolution is perhaps due to the blending of the Si IIλ6355 at photospheric velocity and another HV absorption component (e.g., an Si II shell at a velocity ~18,000 km s^(–1)) in the outer ejecta, and may be common in other normal SNe Ia. The possible origin of the HV absorption features is briefly discussed.


The Astrophysical Journal | 2008

Type Ia Supernovae Are Good Standard Candles in the Near Infrared: Evidence from PAIRITEL

W. Michael Wood-Vasey; Andrew S. Friedman; Joshua S. Bloom; Malcolm Stuart Hicken; Maryam Modjaz; Robert P. Kirshner; Dan L. Starr; Cullen H. Blake; Emilio E. Falco; Andrew Szentgyorgyi; Peter M. Challis; Stephane Blondin; Kaisey S. Mandel; Armin Rest

We have obtained 1087 NIR (JHKs) measurements of 21 SNe Ia using PAIRITEL, nearly doubling the number of well-sampled NIR SN Ia light curves. These data strengthen the evidence that SNe Ia are excellent standard candles in the NIR, even without correction for optical light-curve shape. We construct fiducial NIR templates for normal SNe Ia from our sample, excluding only the three known peculiar SNe Ia: SN 2005bl, SN 2005hk, and SN 2005ke. The H-band absolute magnitudes in this sample of 18 SNe Ia have an intrinsic rms of only 0.15 mag with no correction for light-curve shape. We found a relationship between the H-band extinction and optical color excess of AH = 0.2E(B − V) . This variation is as small as the scatter in distance modulus measurements currently used for cosmology based on optical light curves after corrections for light-curve shape. Combining the homogeneous PAIRITEL measurements with 23 SNe Ia from the literature, these 41 SNe Ia have standard H-band magnitudes with an rms scatter of 0.16 mag. The good match of our sample with the literature sample suggests there are few systematic problems with the photometry. We present a nearby NIR Hubble diagram that shows no correlation of the residuals from the Hubble line with light-curve properties. Future samples that account for optical and NIR light-curve shapes, absorption, spectroscopic variation, or host-galaxy properties may reveal effective ways to improve the use of SNe Ia as distance indicators. Since systematic errors due to dust absorption in optical bands remain the leading difficulty in the cosmological use of supernovae, the good behavior of SN Ia NIR light curves and their relative insensitivity to reddening make these objects attractive candidates for future cosmological work.


The Astrophysical Journal | 2005

TOWARD A MORE STANDARDIZED CANDLE USING GAMMA-RAY BURST ENERGETICS AND SPECTRA

Andrew S. Friedman; J. S. Bloom

The use of gamma-ray burst (GRB) energetics for cosmography has long been advanced as a means to probe out to high redshifts, to the epoch of deceleration. However, although relatively immune to systematic biases from dust extinction, the prompt energy release in GRBs, even when corrected for jetting geometry, is far from being a standard candle. In this work we explore the cosmographic potential of a GRB standard candle based on the newly discovered relation by Ghirlanda and coworkers between the apparent geometry-corrected energies (Eγ) and the peak in the rest-frame prompt-burst spectrum (Ep). We present an explicit, self-consistent formalism for correcting GRB energies with a thorough accounting for observational uncertainties. In contrast to other work, we demonstrate that the current sample of 19 GRBs is not yet cosmographically competitive with results from Type Ia supernovae (SNe Ia), large-scale structure, and the microwave background. Although the Ep-Eγ relation is a highly significant correlation across a range of cosmologies [0 ≤ ΩM, ΩΛ ≤ 2], the goodness of fit of the data to a power law (Ep ∝ E) depends strongly on input assumptions. The most important of these assumptions concern the unknown density (and density profile) of the circumburst medium, the efficiency of converting explosion energy to gamma rays, data selection choices for individual bursts (some of which were not included in similar work), and assumptions in the error analysis. Independent of assumptions, with very few low-z bursts, the current sample is most sensitive to ΩM but essentially insensitive to ΩΛ (let alone the dark energy equation of state w). The relation clearly represents a significant improvement in the search for an empirical GRB standard candle but is further hindered by an unknown physical basis for the relation, the lack of a low-z training set to calibrate the relation in a cosmology-independent way, and several major potential systematic uncertainties and selection effects. Until these concerns are addressed, a larger sample is acquired, and attempts are made to marginalize or perform Monte Carlo simulations over the unknown density distribution (which itself may evolve with redshift), we urge caution concerning claims of the utility of GRBs for cosmography and especially attempts to combine the results from GRBs with those of SNe Ia.


The Astrophysical Journal | 2014

HIGH-DENSITY CIRCUMSTELLAR INTERACTION IN THE LUMINOUS TYPE IIn SN 2010jl: THE FIRST 1100 DAYS

Claes Fransson; Mattias Ergon; Peter J. Challis; Roger A. Chevalier; Robert P. Kirshner; G. H. Marion; Dan Milisavljevic; Nathan Smith; F. Bufano; Andrew S. Friedman; T. Kangas; Josefin Larsson; Seppo Mattila; Stefano Benetti; Ryan Chornock; Ian Czekala; Alicia M. Soderberg; Jesper Sollerman

Hubble Space Telescope and ground-based observations of the Type IIn supernova (SN) 2010jl are analyzed, including photometry and spectroscopy in the ultraviolet, optical, and near-IR bands, 26-1128 days after first detection. At maximum, the bolometric luminosity was similar to 3 x 10(43) erg s(-1) and even at 850 days exceeds 10(42) erg s(-1). A near-IR excess, dominating after 400 days, probably originates in dust in the circumstellar medium (CSM). The total radiated energy is greater than or similar to 6.5x10(50) erg, excluding the dust component. The spectral lines can be separated into one broad component that is due to electron scattering and one narrow with expansion velocity similar to 100 km s(-1) from the CSM. The broad component is initially symmetric around zero velocity but becomes blueshifted after similar to 50 days, while remaining symmetric about a shifted centroid velocity. Dust absorption in the ejecta is unlikely to explain the line shifts, and we attribute the shift instead to acceleration by the SN radiation. From the optical lines and the X-ray and dust properties, there is strong evidence for large-scale asymmetries in the CSM. The ultraviolet lines indicate CNO processing in the progenitor, while the optical shows a number of narrow coronal lines excited by the X-rays. The bolometric light curve is consistent with a radiative shock in an r(-2) CSM with a mass-loss rate of M similar to 0.1 M(circle dot)yr(-1). The total mass lost is greater than or similar to 3 M-circle dot. These properties are consistent with the SN expanding into a CSM characteristic of a luminous blue variable progenitor with a bipolar geometry. The apparent absence of nuclear processing is attributed to a CSM that is still opaque to electron scattering.


The Astrophysical Journal | 2009

TYPE Ia SUPERNOVA LIGHT-CURVE INFERENCE: HIERARCHICAL BAYESIAN ANALYSIS IN THE NEAR-INFRARED

Kaisey S. Mandel; W. Michael Wood-Vasey; Andrew S. Friedman; Robert P. Kirshner

We present a comprehensive statistical analysis of the properties of Type Ia supernova (SN Ia) light curves in the near-infrared using recent data from Peters Automated InfraRed Imaging TELescope and the literature. We construct a hierarchical Bayesian framework, incorporating several uncertainties including photometric error, peculiar velocities, dust extinction, and intrinsic variations, for principled and coherent statistical inference. SN Ia light-curve inferences are drawn from the global posterior probability of parameters describing both individual supernovae and the population conditioned on the entire SN Ia NIR data set. The logical structure of the hierarchical model is represented by a directed acyclic graph. Fully Bayesian analysis of the model and data is enabled by an efficient Markov Chain Monte Carlo algorithm exploiting the conditional probabilistic structure using Gibbs sampling. We apply this framework to the JHKs SN Ia light-curve data. A new light-curve model captures the observed J-band light-curve shape variations. The marginal intrinsic variances in peak absolute magnitudes are ?(MJ ) = 0.17 ? 0.03, ?(MH ) = 0.11 ? 0.03, and ?(MKs ) = 0.19 ? 0.04. We describe the first quantitative evidence for correlations between the NIR absolute magnitudes and J-band light-curve shapes, and demonstrate their utility for distance estimation. The average residual in the Hubble diagram for the training set SNe at cz > 2000kms?1 is 0.10 mag. The new application of bootstrap cross-validation to SN Ia light-curve inference tests the sensitivity of the statistical model fit to the finite sample and estimates the prediction error at 0.15 mag. These results demonstrate that SN Ia NIR light curves are as effective as corrected optical light curves, and, because they are less vulnerable to dust absorption, they have great potential as precise and accurate cosmological distance indicators.


The Astrophysical Journal | 2016

SN 2012cg: EVIDENCE FOR INTERACTION BETWEEN A NORMAL SN Ia AND A NON-DEGENERATE BINARY COMPANION

G. H. Marion; Peter J. Brown; Jozsef Vinko; Jeffrey M. Silverman; David J. Sand; Peter M. Challis; Robert P. Kirshner; J. Craig Wheeler; Perry L. Berlind; Warren R. Brown; Michael L. Calkins; Yssavo Camacho; Govinda Dhungana; Ryan J. Foley; Andrew S. Friedman; Melissa Lynn Graham; D. Andrew Howell; E. Y. Hsiao; J. Irwin; Saurabh W. Jha; R. Kehoe; Lucas M. Macri; Keiichi Maeda; Kaisey S. Mandel; Curtis McCully; Viraj Pandya; Kenneth James Rines; Steven Wilhelmy; W. Zheng

We report evidence for excess blue light from the Type Ia supernova SN 2012cg at fifteen and sixteen days before maximum B-band brightness. The emission is consistent with predictions for the impact of the supernova on a non-degenerate binary companion. This is the first evidence for emission from a companion to a SN Ia. Sixteen days before maximum light, the B-V color of SN 2012cg is 0.2 mag bluer than for other normal SN~Ia. At later times, this supernova has a typical SN Ia light curve, with extinction-corrected M_B = -19.62 +/- 0.02 mag and Delta m_{15}(B) = 0.86 +/- 0.02. Our data set is extensive, with photometry in 7 filters from 5 independent sources. Early spectra also show the effects of blue light, and high-velocity features are observed at early times. Near maximum, the spectra are normal with a silicon velocity v_{Si} = -10,500


Physical Review Letters | 2014

Testing Bell's inequality with cosmic photons: closing the setting-independence loophole.

Jason Gallicchio; Andrew S. Friedman; David Kaiser

km s^{-1}. Comparing the early data with models by Kasen (2010) favors a main-sequence companion of about 6 solar masses. It is possible that many other SN Ia have main-sequence companions that have eluded detection because the emission from the impact is fleeting and faint.

Collaboration


Dive into the Andrew S. Friedman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryan J. Foley

University of California

View shared research outputs
Top Co-Authors

Avatar

J. S. Bloom

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge