Andrew S. Kowalski
University of Granada
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrew S. Kowalski.
Agricultural and Forest Meteorology | 2002
Kell B. Wilson; Allen H. Goldstein; Eva Falge; Marc Aubinet; Dennis D. Baldocchi; Paul Berbigier; Christian Bernhofer; R. Ceulemans; Han Dolman; Christopher B. Field; Achim Grelle; A. Ibrom; Beverly E. Law; Andrew S. Kowalski; Tilden P. Meyers; John Moncrieff; Russell K. Monson; Walter Oechel; John Tenhunen; Riccardo Valentini; Shashi B. Verma
A comprehensive evaluation of energy balance closure is performed across 22 sites and 50 site-years in FLUXNET, a network of eddy covariance sites measuring long-term carbon and energy fluxes in contrasting ecosystems and climates. Energy balance closure was evaluated by statistical regression of turbulent energy fluxes (sensible and latent heat (LE)) against available energy (net radiation, less the energy stored) and by solving for the energy balance ratio, the ratio of turbulent energy fluxes to available energy. These methods indicate a general lack of closure at most sites, with a mean imbalance in the order of 20%. The imbalance was prevalent in all measured vegetation types and in climates ranging from Mediterranean to temperate and arctic. There were no clear differences between sites using open and closed path infrared gas analyzers. At a majority of sites closure improved with turbulent intensity (friction velocity), but lack of total closure was still prevalent under most conditions. The imbalance was greatest during nocturnal periods. The results suggest that estimates of the scalar turbulent fluxes of sensible and LE are underestimated and/or that available energy is overestimated. The implications on interpreting long-term CO2 fluxes at FLUXNET sites depends on whether the imbalance results primarily from general errors associated
Advances in Ecological Research | 2000
Marc Aubinet; Achim Grelle; Andreas Ibrom; Üllar Rannik; John Moncrieff; Thomas Foken; Andrew S. Kowalski; Philippe H. Martin; Paul Berbigier; Christian Bernhofer; Robert Clement; J.A. Elbers; André Granier; Thomas Grünwald; K. Morgenstern; Kim Pilegaard; Corinna Rebmann; W. Snijders; Riccardo Valentini; Timo Vesala
Publisher Summary The chapter has described the measurement system and the procedure followed for the computation of the fluxes and the procedure of flux summation, including data gap filling strategy, night flux corrections and error estimation. It begins with the introduction of estimates of the annual net carbon and water exchange of forests using the EUROFLUX methodology. The chapter then provides us with the theory and moves on to discuss the eddy covariance system and its sonic anemometer, temperature fluctuation measurements, infrared gas analyser, air transport system, and tower instrumentation. Additional measurements are also given in the chapter. Data acquisition and its computation and correction is discussed next in the chapter by giving its general procedure, half-hourly means (co-)variances and uncorrected fluxes, intercomparison of software, and correction for frequency response losses. The chapter has also discussed about quality control and four criteria are investigated here for the same. Spatial representativeness of measured fluxes and summation procedure are reviewed. The chapter then moves on to the discussion of data gap filling through interpolation and parameterization and neural networks. Corrections to night-time data and error estimation are also explored in the chapter. Finally, the chapter closes with conclusions.
Nature | 2000
Riccardo Valentini; Giorgio Matteucci; A. J. Dolman; Ernst-Detlef Schulze; Corinna Rebmann; E.J. Moors; A. Granier; P. Gross; Niels Otto Jensen; Kim Pilegaard; Anders Lindroth; Achim Grelle; Christian Bernhofer; Thomas Grünwald; Marc Aubinet; R. Ceulemans; Andrew S. Kowalski; Timo Vesala; Üllar Rannik; Paul Berbigier; Denis Loustau; J. Guðmundsson; Halldor Thorgeirsson; Andreas Ibrom; K. Morgenstern; Robert Clement; John Moncrieff; Leonardo Montagnani; S. Minerbi; P. G. Jarvis
Carbon exchange between the terrestrial biosphere and the atmosphere is one of the key processes that need to be assessed in the context of the Kyoto Protocol. Several studies suggest that the terrestrial biosphere is gaining carbon, but these estimates are obtained primarily by indirect methods, and the factors that control terrestrial carbon exchange, its magnitude and primary locations, are under debate. Here we present data of net ecosystem carbon exchange, collected between 1996 and 1998 from 15 European forests, which confirm that many European forest ecosystems act as carbon sinks. The annual carbon balances range from an uptake of 6.6 tonnes of carbon per hectare per year to a release of nearly 1 t C ha -1 yr-1, with a large variability between forests. The data show a significant increase of carbon uptake with decreasing latitude, whereas the gross primary production seems to be largely independent of latitude. Our observations indicate that, in general, ecosystem respiration determines net ecosystem carbon exchange. Also, for an accurate assessment of the carbon balance in a particular forest ecosystem, remote sensing of the normalized difference vegetation index or estimates based on forest inventories may not be sufficient.
Nature | 2007
F. Magnani; Maurizio Mencuccini; Marco Borghetti; Paul Berbigier; Frank Berninger; Sylvain Delzon; Achim Grelle; Pertti Hari; P. G. Jarvis; Pasi Kolari; Andrew S. Kowalski; Harry Lankreijer; Beverly E. Law; Anders Lindroth; Denis Loustau; Giovanni Manca; John Moncrieff; Mark Rayment; Vanessa Tedeschi; Riccardo Valentini; John Grace
Temperate and boreal forests in the Northern Hemisphere cover an area of about 2 × 107 square kilometres and act as a substantial carbon sink (0.6–0.7 petagrams of carbon per year). Although forest expansion following agricultural abandonment is certainly responsible for an important fraction of this carbon sink activity, the additional effects on the carbon balance of established forests of increased atmospheric carbon dioxide, increasing temperatures, changes in management practices and nitrogen deposition are difficult to disentangle, despite an extensive network of measurement stations. The relevance of this measurement effort has also been questioned, because spot measurements fail to take into account the role of disturbances, either natural (fire, pests, windstorms) or anthropogenic (forest harvesting). Here we show that the temporal dynamics following stand-replacing disturbances do indeed account for a very large fraction of the overall variability in forest carbon sequestration. After the confounding effects of disturbance have been factored out, however, forest net carbon sequestration is found to be overwhelmingly driven by nitrogen deposition, largely the result of anthropogenic activities. The effect is always positive over the range of nitrogen deposition covered by currently available data sets, casting doubts on the risk of widespread ecosystem nitrogen saturation under natural conditions. The results demonstrate that mankind is ultimately controlling the carbon balance of temperate and boreal forests, either directly (through forest management) or indirectly (through nitrogen deposition).
Agricultural and Forest Meteorology | 2003
Arnaud Carrara; Andrew S. Kowalski; Johan Neirynck; Ivan A. Janssens; Jorge Curiel Yuste; R. Ceulemans
In this paper, we present and discuss the annual net ecosystem exchange (NEE) results from 5 years (1997–2001) of continuous eddy covariance measurements of CO2 flux above a mixed temperate forest. The forest was a 70-year-old coniferous (Scots pine)—deciduous mixture, with slow growth rate and a leaf area index (LAI) of about 3, and was part of the European CARBOEUROFLUX research network. Effects of the data pre-treatment and the gap filling method on annual NEE estimates were analyzed. The u∗-correction increased the annual NEE by + 61 gCm −2 per year on average. The maximum difference in annual NEE estimates from different gap filling methods amounted up to 13 0gCm −2 per year in a year with a large gap in the CO2 flux series. The estimated average annual NEE over the 5 years was + 110 gCm −2 per year (ranging from − 9 to 255 gCm −2 per year) when using the most defensible gap filling strategy. We also analyzed the inter-annual variability of carbon balance, which was found to be mainly dependent on the length of the growing season and on the annual temperature. The observation that this forest acted as a CO2 source contrasts with previous results from most other temperate forests.
Agricultural and Forest Meteorology | 2002
Eva Falge; John Tenhunen; Dennis D. Baldocchi; Marc Aubinet; Peter S. Bakwin; Paul Berbigier; Christian Bernhofer; Jean-Marc Bonnefond; George Burba; Robert Clement; Kenneth J. Davis; J.A. Elbers; Matthias Falk; Allen H. Goldstein; Achim Grelle; André Granier; Thomas Grünwald; J. Guðmundsson; David Y. Hollinger; Ivan A. Janssens; P. Keronen; Andrew S. Kowalski; Gabriel G. Katul; Beverly E. Law; Yadvinder Malhi; Tilden P. Meyers; Russell K. Monson; E.J. Moors; J. William Munger; Walter Oechel
As length and timing of the growing season are major factors explaining differences in carbon exchange of ecosystems, we analyzed seasonal patterns of net ecosystem carbon exchange (FNEE) using eddy covariance data of the FLUXNET data base (http://www-eosdis.ornl.gov/FLUXNET). The study included boreal and temperate, deciduous and coniferous forests, Mediterranean evergreen systems, rainforest, native and managed temperate grasslands, tundra, and C3 and C4 crops. Generalization of seasonal patterns are useful for identifying functional vegetation types for global dynamic vegetation models, as well as for global inversion studies, and can help improve phenological modules in SVAT or biogeochemical models. The results of this study have important validation potential for global carbon cycle modeling. The phasing of respiratory and assimilatory capacity differed within forest types: for temperate coniferous forests seasonal uptake and release capacities are in phase, for temperate deciduous and boreal coniferous forests, release was delayed compared to uptake. According to seasonal pattern of maximum nighttime release (evaluated over 15-day periods, Fmax) the study sites can be grouped in four classes: (1) boreal and high altitude conifers and grasslands; (2) temperate deciduous and temperate conifers; (3) tundra and crops; (4) evergreen Mediterranean and tropical forests. Similar results are found for maximum daytime uptake (Fmin) and the integral net carbon flux, but temperate deciduous forests fall into class 1. For forests, seasonal amplitudes of Fmax and Fmin increased in the order tropical C3-crops>temperate deciduous forests>temperate conifers>boreal conifers>tundra ecosystems. Due to data restrictions, our analysis centered mainly on Northern Hemisphere temperate and boreal forest ecosystems. Grasslands, crops, Mediterranean ecosystems, and rainforests are under-represented, as are savanna systems, wooded grassland, shrubland, or year-round measurements in tundra systems. For regional or global estimates of carbon sequestration potentials, future investigations of eddy covariance should expand in these systems.
Ecosystems | 2003
Galina Churkina; John Tenhunen; Peter E. Thornton; Eva Falge; J.A. Elbers; Markus Erhard; Thomas Grünwald; Andrew S. Kowalski; Üllar Rannik; Detlef F. Sprinz
AbstractThis paper provides the first steps toward a regional-scale analysis of carbon (C) budgets. We explore the ability of the ecosystem model BIOME-BGC to estimate the daily and annual C dynamics of four European coniferous forests and shifts in these dynamics in response to changing environmental conditions. We estimate uncertainties in the model results that arise from incomplete knowledge of site management history (for example, successional stage of forest). These uncertainties are especially relevant in regional-scale simulations, because this type of information is difficult to obtain. Although the model predicted daily C and water fluxes reasonably well at all sites, it seemed to have a better predictive capacity for the photosynthesis-related processes than for respiration. Leaf area index (LAI) was modeled accurately at two sites but overestimated at two others (as a result of poor long-term climate drivers and uncertainties in model parameterization). The overestimation of LAI (and consequently gross photosynthetic production (GPP)), in combination with reasonable estimates of the daily net ecosystem productivity (NEP) of those forests, also illustrates the problem with modeled respiration. The model results suggest that all four European forests have been net sinks of C at the rate of 100–300 gC/m2/y and that this C sequestration capacity would be 30%–70% lower without increasing nitrogen (N) deposition and carbon dioxide (CO2) concentrations. The magnitude of the forest responses was dependent not only on the rate of changes in environmental factors, but also on site-specific conditions such as climate and soil depth. We estimated that the modeled C exchange at the study sites was reduced by 50%–100% when model simulations were performed for climax forests rather than regrowing forests. The estimates of water fluxes were less sensitive to different initializations of state variables or environmental change scenarios than C fluxes.
Journal of Atmospheric and Oceanic Technology | 1997
Andrew S. Kowalski; Peter M. Anthoni; Richard J. Vong; Anthony C. Delany; Gordon D. Maclean
Abstract Direct interception of windblown cloud water by forests has been dubbed “occult deposition” because it represents a hydrological input that is hidden from rain gauges. Eddy correlation studies of this phenomenon have estimated cloud water fluxes to vegetation yet have lacked estimates of error bounds. This paper presents an evaluation of instrumental and methodological errors for cloud liquid water fluxes to put such eddy correlation measurements in context. Procedures for data acquisition, processing (including correction factors), and calibration testing of the particulate volume monitor (PVM) and forward-scattering spectrometer probe (FSSP) are detailed. Nearly 200 h of in-cloud data are analyzed for intercomparison of these instruments. Three methods of coordinate system rotation are investigated; the flux shows little sensitivity to the method used, and the difference between fluxes at different stations is even less sensitive to this choice. Side-by-side intercomparison of two PVMs and one ...
Atmospheric Environment | 2001
Andrew S. Kowalski
Abstract The effects of deliquescent processes on eddy covariance estimates of dry deposition are considered, both theoretically and using some representative data. Turbulent and latent heat fluxes near the Earths surface imply a vertical “saturation ratio flux” (Fairall, C.W., Atmospheric Environment, 18 (1984) 1329). Deliquescence, instantaneous relative to turbulent time-scales, responds to saturation ratio (or relative humidity) fluctuations and induces covariance between vertical winds and size-resolved number concentrations of hygroscopic aerosols. The induced covariance represents an error in the estimation of surface exchange by direct application of the eddy covariance technique. Under deliquescent conditions (high relative humidity), resulting errors in dry deposition estimates are shown to be often as large as typical deposition velocities reported for small particles, depending on the shape of the number distribution and the magnitudes of heat and vapor fluxes in the boundary layer.
Atmospheric Environment | 1997
Richard J. Vong; Bradly M. Baker; Fredrick J. Brechtel; Robert T. Collier; Joyce M. Harris; Andrew S. Kowalski; Noreen C. McDonald; Lynn McInnes
Abstract Field measurements of the chemical composition of boundary-layer clouds that formed in clean, marine air are presented as a background reference point for comparison to cloud water composition in more polluted regions. An impaction-based sampler was used to simultaneously collect cloud water on two stages, where the ratio of droplet diameter was ∼1.1 for the two droplet size fractions. Analysis revealed that large droplets were more concentrated than smaller cloud droplets by a factor of 1.5 for sea-salt-derived species. Cloud water concentrations of ionic species were generally five times greater the concentrations of the same ions in rain water. Aqueous-phase solute concentrations in cloud varied over two orders of magnitude but generally were quite low, correlated to each other and to aerosol (CN) concentration, but negatively correlated to LWC. Air-equivalent solute concentrations were calculated, allowing the detection of the influence of air-mass trajectory on cloud-water composition. A multivariate statistical analysis of the cloud water data suggested sea salt, biogenic, crustal, and anthropogenic emission source contributions; the last two sources existed only for continental air-mass trajectories. Coastal and oceanic trajectories were selected for the purpose of estimating a northern hemisphere, mid-latitude, marine, background cloud water composition of 8 neq m −3 non-sea salt SO 4 2− and 4 neq m −3 NO 3 − .