Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew S. Moore is active.

Publication


Featured researches published by Andrew S. Moore.


The New England Journal of Medicine | 2014

Targetable Kinase-Activating Lesions in Ph-like Acute Lymphoblastic Leukemia

Kathryn G. Roberts; Yongjin Li; Debbie Payne-Turner; Richard C. Harvey; Yung-Li Yang; Dehua Pei; Kelly McCastlain; Li Ding; C. Lu; Guangchun Song; Jing Ma; Jared Becksfort; Michael Rusch; Shann-Ching Chen; John Easton; Jinjun Cheng; Kristy Boggs; Natalia Santiago-Morales; Ilaria Iacobucci; Robert S. Fulton; Ji Wen; Marcus B. Valentine; Chieh-Lung Cheng; Steven W. Paugh; Meenakshi Devidas; I. M. Chen; S. Reshmi; Amy Smith; Erin Hedlund; Pankaj Gupta

BACKGROUND Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is characterized by a gene-expression profile similar to that of BCR-ABL1-positive ALL, alterations of lymphoid transcription factor genes, and a poor outcome. The frequency and spectrum of genetic alterations in Ph-like ALL and its responsiveness to tyrosine kinase inhibition are undefined, especially in adolescents and adults. METHODS We performed genomic profiling of 1725 patients with precursor B-cell ALL and detailed genomic analysis of 154 patients with Ph-like ALL. We examined the functional effects of fusion proteins and the efficacy of tyrosine kinase inhibitors in mouse pre-B cells and xenografts of human Ph-like ALL. RESULTS Ph-like ALL increased in frequency from 10% among children with standard-risk ALL to 27% among young adults with ALL and was associated with a poor outcome. Kinase-activating alterations were identified in 91% of patients with Ph-like ALL; rearrangements involving ABL1, ABL2, CRLF2, CSF1R, EPOR, JAK2, NTRK3, PDGFRB, PTK2B, TSLP, or TYK2 and sequence mutations involving FLT3, IL7R, or SH2B3 were most common. Expression of ABL1, ABL2, CSF1R, JAK2, and PDGFRB fusions resulted in cytokine-independent proliferation and activation of phosphorylated STAT5. Cell lines and human leukemic cells expressing ABL1, ABL2, CSF1R, and PDGFRB fusions were sensitive in vitro to dasatinib, EPOR and JAK2 rearrangements were sensitive to ruxolitinib, and the ETV6-NTRK3 fusion was sensitive to crizotinib. CONCLUSIONS Ph-like ALL was found to be characterized by a range of genomic alterations that activate a limited number of signaling pathways, all of which may be amenable to inhibition with approved tyrosine kinase inhibitors. Trials identifying Ph-like ALL are needed to assess whether adding tyrosine kinase inhibitors to current therapy will improve the survival of patients with this type of leukemia. (Funded by the American Lebanese Syrian Associated Charities and others.).


Cancer Cell | 2017

Intertumoral Heterogeneity within Medulloblastoma Subgroups

Florence M.G. Cavalli; Marc Remke; Ladislav Rampasek; John Peacock; David Shih; Betty Luu; Livia Garzia; Jonathon Torchia; Carolina Nör; A. Sorana Morrissy; Sameer Agnihotri; Yuan Yao Thompson; Claudia M. Kuzan-Fischer; Hamza Farooq; Keren Isaev; Craig Daniels; Byung Kyu Cho; Seung Ki Kim; Kyu Chang Wang; Ji Yeoun Lee; Wieslawa A. Grajkowska; Marta Perek-Polnik; Alexandre Vasiljevic; Cécile Faure-Conter; Anne Jouvet; Caterina Giannini; Amulya A. Nageswara Rao; Kay Ka Wai Li; Ho Keung Ng; Charles G. Eberhart

While molecular subgrouping has revolutionized medulloblastoma classification, the extent of heterogeneity within subgroups is unknown. Similarity network fusion (SNF) applied to genome-wide DNA methylation and gene expression data across 763 primary samples identifies very homogeneous clusters of patients, supporting the presence of medulloblastoma subtypes. After integration of somatic copy-number alterations, and clinical features specific to each cluster, we identify 12 different subtypes of medulloblastoma. Integrative analysis using SNF further delineates group 3 from group 4 medulloblastoma, which is not as readily apparent through analyses of individual data types. Two clear subtypes of infants with Sonic Hedgehog medulloblastoma with disparate outcomes and biology are identified. Medulloblastoma subtypes identified through integrative clustering have important implications for stratification of future clinical trials.


Leukemia | 2010

Aurora kinase inhibitors: novel small molecules with promising activity in acute myeloid and Philadelphia-positive leukemias

Andrew S. Moore; Julian Blagg; Spiros Linardopoulos; Adj Pearson

Aurora kinases are a family of protein kinases that have a key role in multiple stages of mitosis. Over-expression of Aurora kinases, particularly Aurora A, has been demonstrated in a number of solid tumors and hematological malignancies. Not surprisingly, these serine/threonine kinases have become attractive small molecule targets for cancer therapeutics, with several inhibitors currently in early-phase clinical trials. A small number of compounds developed to date are highly selective for either Aurora A or Aurora B, while the majority inhibit both Aurora A and Aurora B; many of these compounds exhibit ‘off-target’ inhibition of kinases such as ABL, JAK2 and FLT3. It is currently unclear whether the therapeutic activity of these compounds in leukemia is primarily due to selective Aurora or multi-kinase inhibition. The most promising application for Aurora kinase inhibitors to date appears to be in FLT3-mutated acute myeloid leukemia (AML) and imatinib-resistant chronic myeloid leukemia/Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia, particularly when caused by the T315I mutation. Here we review the growing body of evidence supporting the use of Aurora kinase inhibitors as effective agents for AML and Ph+ leukemias.


Leukemia | 2012

Selective FLT3 inhibition of FLT3-ITD+ acute myeloid leukaemia resulting in secondary D835Y mutation: A model for emerging clinical resistance patterns

Andrew S. Moore; Amir Faisal; D. Gonzalez de Castro; Vassilios Bavetsias; Chongbo Sun; Butrus Atrash; Melanie Valenti; A de Haven Brandon; Sian Avery; D. Mair; Fabio Mirabella; J Swansbury; Andy Pearson; Paul Workman; Julian Blagg; Florence I. Raynaud; Suzanne A. Eccles; Spiros Linardopoulos

Acquired resistance to selective FLT3 inhibitors is an emerging clinical problem in the treatment of FLT3-ITD+ acute myeloid leukaemia (AML). The paucity of valid pre-clinical models has restricted investigations to determine the mechanism of acquired therapeutic resistance, thereby limiting the development of effective treatments. We generated selective FLT3 inhibitor-resistant cells by treating the FLT3-ITD+ human AML cell line MOLM-13 in vitro with the FLT3-selective inhibitor MLN518, and validated the resistant phenotype in vivo and in vitro. The resistant cells, MOLM-13-RES, harboured a new D835Y tyrosine kinase domain (TKD) mutation on the FLT3-ITD+ allele. Acquired TKD mutations, including D835Y, have recently been identified in FLT3-ITD+ patients relapsing after treatment with the novel FLT3 inhibitor, AC220. Consistent with this clinical pattern of resistance, MOLM-13-RES cells displayed high relative resistance to AC220 and Sorafenib. Furthermore, treatment of MOLM-13-RES cells with AC220 lead to loss of the FLT3 wild-type allele and the duplication of the FLT3-ITD-D835Y allele. Our FLT3-Aurora kinase inhibitor, CCT137690, successfully inhibited growth of FLT3-ITD-D835Y cells in vitro and in vivo, suggesting that dual FLT3-Aurora inhibition may overcome selective FLT3 inhibitor resistance, in part due to inhibition of Aurora kinase, and may benefit patients with FLT3-mutated AML.


Pediatric Blood & Cancer | 2009

Vincristine: Can its therapeutic index be enhanced?

Andrew S. Moore; Ross Pinkerton

Vincristine is one of the most widely used and more effective drugs in paediatric oncology. The dose‐limiting toxicity of neuropathy, lack of proven neuroprotective measures and an incomplete understanding of the pharmacokinetics and pharmacogenetics of vincristine have limited its therapeutic potential. Recent advances in the understanding of vincristine pharmacokinetics and pharmacogenetics, and potential methods of preventing neurotoxicity are reviewed which could enable dose escalation and dose individualisation in order to enhance the therapeutic index. Pediatr Blood Cancer 2009; 53:1180–1187.


Nature Communications | 2016

Spatial and temporal homogeneity of driver mutations in diffuse intrinsic pontine glioma.

Hamid Nikbakht; Eshini Panditharatna; Leonie G. Mikael; Rui Li; Tenzin Gayden; Matthew Osmond; Cheng-Ying Ho; Madhuri Kambhampati; Eugene I. Hwang; Damien Faury; Alan Siu; Simon Papillon-Cavanagh; Denise Bechet; Keith L. Ligon; Benjamin Ellezam; Wendy J. Ingram; Caedyn Stinson; Andrew S. Moore; Katherine E. Warren; Jason Karamchandani; Roger J. Packer; Nada Jabado; Jacek Majewski; Javad Nazarian

Diffuse Intrinsic Pontine Gliomas (DIPGs) are deadly paediatric brain tumours where needle biopsies help guide diagnosis and targeted therapies. To address spatial heterogeneity, here we analyse 134 specimens from various neuroanatomical structures of whole autopsy brains from nine DIPG patients. Evolutionary reconstruction indicates histone 3 (H3) K27M—including H3.2K27M—mutations potentially arise first and are invariably associated with specific, high-fidelity obligate partners throughout the tumour and its spread, from diagnosis to end-stage disease, suggesting mutual need for tumorigenesis. These H3K27M ubiquitously-associated mutations involve alterations in TP53 cell-cycle (TP53/PPM1D) or specific growth factor pathways (ACVR1/PIK3R1). Later oncogenic alterations arise in sub-clones and often affect the PI3K pathway. Our findings are consistent with early tumour spread outside the brainstem including the cerebrum. The spatial and temporal homogeneity of main driver mutations in DIPG implies they will be captured by limited biopsies and emphasizes the need to develop therapies specifically targeting obligate oncohistone partnerships.


Cell Stem Cell | 2014

Telomerase Inhibition Effectively Targets Mouse and Human AML Stem Cells and Delays Relapse following Chemotherapy

Claudia Bruedigam; Frederik Otzen Bagger; Florian H. Heidel; Catherine Paine Kuhn; Solene Guignes; Rebecca Austin; Therese Vu; Erwin M. Lee; Sarbjit Riyat; Andrew S. Moore; Richard B. Lock; Lars Bullinger; Geoffrey R. Hill; Scott A. Armstrong; David A. Williams; Steven W. Lane

Acute myeloid leukemia (AML) is an aggressive and lethal blood cancer maintained by rare populations of leukemia stem cells (LSCs). Selective targeting of LSCs is a promising approach for treating AML and preventing relapse following chemotherapy, and developing such therapeutic modalities is a key priority. Here, we show that targeting telomerase activity eradicates AML LSCs. Genetic deletion of the telomerase subunit Terc in a retroviral mouse AML model induces cell-cycle arrest and apoptosis of LSCs, and depletion of telomerase-deficient LSCs is partially rescued by p53 knockdown. Murine Terc(-/-) LSCs express a specific gene expression signature that can be identified in human AML patient cohorts and is positively correlated with patient survival following chemotherapy. In xenografts of primary human AML, genetic or pharmacological inhibition of telomerase targets LSCs, impairs leukemia progression, and delays relapse following chemotherapy. Altogether, these results establish telomerase inhibition as an effective strategy for eliminating AML LSCs.


Cancer Cell | 2017

Integrated Molecular Meta-Analysis of 1,000 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma

Alan Mackay; Anna Burford; Diana Carvalho; Elisa Izquierdo; Janat Fazal-Salom; Kathryn R. Taylor; Lynn Bjerke; Matthew Clarke; Mara Vinci; Meera Nandhabalan; Sara Temelso; Sergey Popov; Valeria Molinari; Pichai Raman; Angela J. Waanders; Harry J. Han; Saumya Gupta; Lynley V. Marshall; Stergios Zacharoulis; Sucheta Vaidya; Henry Mandeville; Leslie R. Bridges; Andrew J. Martin; Safa Al-Sarraj; Christopher Chandler; Ho Keung Ng; Xingang Li; Kun Mu; Saoussen Trabelsi; Dorra H’mida-Ben Brahim

Summary We collated data from 157 unpublished cases of pediatric high-grade glioma and diffuse intrinsic pontine glioma and 20 publicly available datasets in an integrated analysis of >1,000 cases. We identified co-segregating mutations in histone-mutant subgroups including loss of FBXW7 in H3.3G34R/V, TOP3A rearrangements in H3.3K27M, and BCOR mutations in H3.1K27M. Histone wild-type subgroups are refined by the presence of key oncogenic events or methylation profiles more closely resembling lower-grade tumors. Genomic aberrations increase with age, highlighting the infant population as biologically and clinically distinct. Uncommon pathway dysregulation is seen in small subsets of tumors, further defining the molecular diversity of the disease, opening up avenues for biological study and providing a basis for functionally defined future treatment stratification.


Journal of Medicinal Chemistry | 2012

Optimization of Imidazo[4,5-B]Pyridine-Based Kinase Inhibitors: Identification of a Dual Flt3/Aurora Kinase Inhibitor as an Orally Bioavailable Preclinical Development Candidate for the Treatment of Acute Myeloid Leukemia.

Vassilios Bavetsias; Simon Crumpler; Chongbo Sun; Sian Avery; Butrus Atrash; Amir Faisal; Andrew S. Moore; Magda N. Kosmopoulou; Nathan Brown; Peter Sheldrake; Katherine Bush; Alan T. Henley; Gary Box; Melanie Valenti; Alexis de Haven Brandon; Florence I. Raynaud; Paul Workman; Suzanne A. Eccles; Richard Bayliss; Spiros Linardopoulos; Julian Blagg

Optimization of the imidazo[4,5-b]pyridine-based series of Aurora kinase inhibitors led to the identification of 6-chloro-7-(4-(4-chlorobenzyl)piperazin-1-yl)-2-(1,3-dimethyl-1H-pyrazol-4-yl)-3H-imidazo[4,5-b]pyridine (27e), a potent inhibitor of Aurora kinases (Aurora-A Kd = 7.5 nM, Aurora-B Kd = 48 nM), FLT3 kinase (Kd = 6.2 nM), and FLT3 mutants including FLT3-ITD (Kd = 38 nM) and FLT3(D835Y) (Kd = 14 nM). FLT3-ITD causes constitutive FLT3 kinase activation and is detected in 20–35% of adults and 15% of children with acute myeloid leukemia (AML), conferring a poor prognosis in both age groups. In an in vivo setting, 27e strongly inhibited the growth of a FLT3-ITD-positive AML human tumor xenograft (MV4–11) following oral administration, with in vivo biomarker modulation and plasma free drug exposures consistent with dual FLT3 and Aurora kinase inhibition. Compound 27e, an orally bioavailable dual FLT3 and Aurora kinase inhibitor, was selected as a preclinical development candidate for the treatment of human malignancies, in particular AML, in adults and children.


Journal of Paediatrics and Child Health | 2011

Vincristine pharmacodynamics and pharmacogenetics in children with cancer: A limited-sampling, population modelling approach

Andrew S. Moore; Ross Norris; Gareth Price; Thu Nguyen; Ming Ni; Rani George; Karin van Breda; John A. Duley; B. G. Charles; Ross Pinkerton

Background:  Vincristine is a key component of many childhood cancer treatment regimens. Pharmacodynamic parameters such as clinical efficacy and toxicity may be influenced by polymorphisms of CYP3A.

Collaboration


Dive into the Andrew S. Moore's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Burford

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Valeria Molinari

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diana Carvalho

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Chris Jones

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Julian Blagg

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Kathryn R. Taylor

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Mara Vinci

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Ross Pinkerton

The Royal Marsden NHS Foundation Trust

View shared research outputs
Researchain Logo
Decentralizing Knowledge