Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew S. Peterson is active.

Publication


Featured researches published by Andrew S. Peterson.


Cell | 2009

Retinoic acid from the meninges regulates cortical neuron generation

Julie A. Siegenthaler; Amir M. Ashique; Konstantinos Zarbalis; Katelin P. Patterson; Jonathan H. Hecht; Maureen A. Kane; Alexandra E. Folias; Youngshik Choe; Scott R. May; Tsutomu Kume; Joseph L. Napoli; Andrew S. Peterson; Samuel J. Pleasure

Extrinsic signals controlling generation of neocortical neurons during embryonic life have been difficult to identify. In this study we demonstrate that the dorsal forebrain meninges communicate with the adjacent radial glial endfeet and influence cortical development. We took advantage of Foxc1 mutant mice with defects in forebrain meningeal formation. Foxc1 dosage and loss of meninges correlated with a dramatic reduction in both neuron and intermediate progenitor production and elongation of the neuroepithelium. Several types of experiments demonstrate that retinoic acid (RA) is the key component of this secreted activity. In addition, Rdh10- and Raldh2-expressing cells in the dorsal meninges were either reduced or absent in the Foxc1 mutants, and Rdh10 mutants had a cortical phenotype similar to the Foxc1 null mutants. Lastly, in utero RA treatment rescued the cortical phenotype in Foxc1 mutants. These results establish RA as a potent, meningeal-derived cue required for successful corticogenesis.Extrinsic signals controlling generation of neocortical neurons during embryonic life have been difficult to identify. In this study we demonstrate that the dorsal forebrain meninges communicate with the adjacent radial glial endfeet and influence cortical development. We took advantage of Foxc1 mutant mice with defects in forebrain meningeal formation. Foxc1 dosage and loss of meninges correlated with a dramatic reduction in both neuron and intermediate progenitor production and elongation of the neuroepithelium. Several types of experiments demonstrate that retinoic acid (RA) is the key component of this secreted activity. In addition, Rdh10- and Raldh2-expressing cells in the dorsal meninges were either reduced or absent in the Foxc1 mutants, and Rdh10 mutants had a cortical phenotype similar to the Foxc1 null mutants. Lastly, in utero RA treatment rescued the cortical phenotype in Foxc1 mutants. These results establish RA as a potent, meningeal-derived cue required for successful corticogenesis.


Cell | 1988

Genetic analysis of monoclonal antibody and HIV binding sites on the human lymphocyte antigen CD4

Andrew S. Peterson; Brian Seed

Saturation mutagenesis and a complement fixation selection have yielded CD4 point mutants with impaired antibody and human immunodeficiency virus binding. The patterns of amino acid substitution, in conjunction with previous antibody cross-blocking data, affirm the similar tertiary structures of the CD4 amino-terminal domain and immunoglobulin variable regions. Single residue substitutions affecting virus binding and syncytium formation are observed over an eight residue segment located in a portion of the molecule homologous to the second hypervariable region of an antibody combining site.


Nature Biotechnology | 2010

A mouse knockout library for secreted and transmembrane proteins

Tracy Tang; Li Li; Jerry Tang; Yun Li; Wei Yu Lin; Flavius Martin; Deanna Grant; Mark Solloway; Leon Parker; Weilan Ye; William F. Forrest; Nico Ghilardi; Tamas Oravecz; Kenneth A. Platt; Dennis S. Rice; Gwenn Hansen; Alejandro Abuin; Derek E. Eberhart; Paul J. Godowski; Kathleen H. Holt; Andrew S. Peterson; Brian Zambrowicz; Frederic J. de Sauvage

Large collections of knockout organisms facilitate the elucidation of gene functions. Here we used retroviral insertion or homologous recombination to disrupt 472 genes encoding secreted and membrane proteins in mice, providing a resource for studying a large fraction of this important class of drug target. The knockout mice were subjected to a systematic phenotypic screen designed to uncover alterations in embryonic development, metabolism, the immune system, the nervous system and the cardiovascular system. The majority of knockout lines exhibited altered phenotypes in at least one of these therapeutic areas. To our knowledge, a comprehensive phenotypic assessment of a large number of mouse mutants generated by a gene-specific approach has not been described previously.


Current Biology | 2009

The Mammalian Cos2 Homolog Kif7 Plays an Essential Role in Modulating Hh Signal Transduction during Development

Setsu Endoh-Yamagami; Marie Evangelista; Deanna Grant Wilson; Xiaohui Wen; Jan-Willem Theunissen; Khanhky Phamluong; Matti Davis; Suzie J. Scales; Mark Solloway; Frederic J. de Sauvage; Andrew S. Peterson

The Hedgehog (Hh) signaling pathway regulates development in animals ranging from flies to humans. Although its framework is conserved, differences in pathway components have been reported. A kinesin-like protein, Costal2 (Cos2), plays a central role in the Hh pathway in flies. Knockdown of a zebrafish homolog of Cos2, Kif7, results in ectopic Hh signaling, suggesting that Kif7 acts primarily as a negative regulator of Hh signal transduction. However, in vitro analysis of the function of mammalian Kif7 and the closely related Kif27 has led to the conclusion that neither protein has a role in Hh signaling. Using Kif7 knockout mice, we demonstrate that mouse Kif7, like its zebrafish and Drosophila homologs, plays a role in transducing the Hh signal. We show that Kif7 accumulates at the distal tip of the primary cilia in a Hh-dependent manner. We also demonstrate a requirement for Kif7 in the efficient localization of Gli3 to cilia in response to Hh and for the processing of Gli3 to its repressor form. These results suggest a role for Kif7 in coordinating Hh signal transduction at the tip of cilia and preventing Gli3 cleavage into a repressor form in the presence of Hh.


Proceedings of the National Academy of Sciences of the United States of America | 2001

FRAP/mTOR is required for proliferation and patterning during embryonic development in the mouse

Kathryn Hentges; Baheya Sirry; Anne Claude Gingeras; Dos D. Sarbassov; Nahum Sonenberg; David M. Sabatini; Andrew S. Peterson

The FKBP-12-rapamycin associated protein (FRAP, also known as mTOR and RAFT-1) is a member of the phosphoinositide kinase related kinase family. FRAP has serine/threonine kinase activity and mediates the cellular response to mitogens through signaling to p70s6 kinase (p70s6k) and 4E-BP1, resulting in an increase in translation of subsets of cellular mRNAs. Translational up-regulation is blocked by inactivation of FRAP signaling by rapamycin, resulting in G1 cell cycle arrest. Rapamycin is used as an immunosuppressant for kidney transplants and is currently under investigation as an antiproliferative agent in tumors because of its ability to block FRAP activity. Although the role of FRAP has been extensively studied in vitro, characterization of mammalian FRAP function in vivo has been limited to the immune system and tumor models. Here we report the identification of a loss-of-function mutation in the mouse FRAP gene, which illustrates a requirement for FRAP activity in embryonic development. Our studies also determined that rapamycin treatment of the early embryo results in a phenotype indistinguishable from the FRAP mutant, demonstrating that rapamycin has teratogenic activity.


Science Translational Medicine | 2011

Amelioration of Type 2 Diabetes by Antibody-Mediated Activation of Fibroblast Growth Factor Receptor 1

Ai-Luen Wu; Ganesh Kolumam; Scott Stawicki; Yongmei Chen; Jun Li; Jose Zavala-Solorio; Khanhky Phamluong; Bo Feng; Li Li; Scot A. Marsters; Lance Kates; Nicholas van Bruggen; Maya Leabman; Anne Wong; David West; Howard M. Stern; Elizabeth Luis; Hok Seon Kim; Daniel G. Yansura; Andrew S. Peterson; Ellen Filvaroff; Yan Wu; Junichiro Sonoda

Antibody-mediated activation of fibroblast growth factor receptor 1 reverses the diabetic phenotype in mice, likely by affecting brown adipose tissues. Getting at Brown Fat It’s fun to indulge in holiday cheer, if only a holiday miracle allowed one to avoid the often-linked weight gain. At the molecular level, obesity and type 2 diabetes can be linked by the fibroblast growth factor (FGF) family of proteins and their receptors (FGFRs), with some factors showing disease-reversing capabilities. For instance, overweight, diabetic mice treated with FGF21 regain normal metabolism and lose weight, even without spending hours on a treadmill. However, attempts to use this fat-burning factor in humans have not been successful, owing to poor pharmacokinetics as well as concerns over negative effects of modified FGF21 proteins. In this issue, Wu and colleagues describe an antibody-based FGF21 mimic that circumvents these limitations to overcome metabolic disease in mice. The authors reasoned that robust drugs that closely mimic FGF21 function would similarly exert antidiabetic effects. Using phage display technology, Wu et al. identified monoclonal antibodies (R1MAbs) that were specifically targeted tissues that play key roles in diabetes and obesity, including adipose (fat) tissue. In contrast to FGF21, which binds several forms of the FGFR throughout the body, the phage-derived R1MAbs bound only to FGFR1—a receptor present in the pancreas and in brown and white adipose tissues. Diabetic mice with high blood sugar (hyperglycemia) were injected once with either R1MAbs or a control antibody. Within 1 week, blood glucose concentrations in the R1MAb-treated mice were normalized and remained at lower levels compared to placebo-treated mice for more than 1 month without reaching dangerously low blood glucose concentrations (hypoglycemia). The R1MAbs also helped the diabetic mice to lose weight, indicating that this antibody agonist of FGFR1 is a dual-action drug for both diabetes and obesity. Wu et al. also shed light on the mechanism of action of their R1MAbs, showing that they work via FGFR homodimerization in brown adipose tissue. With improved pharmacokinetics over FGF21, in addition to a specific receptor-targeting mechanism, these R1MAbs could enter human clinical trials for diabetes and other obesity-related diseases in the near future. Unfortunately, a miracle drug won’t be available in time for the holidays, so perhaps, this year, opt for the sugar-free egg nog. Clinical use of recombinant fibroblast growth factor 21 (FGF21) for the treatment of type 2 diabetes and other disorders linked to obesity has been proposed; however, its clinical development has been challenging owing to its poor pharmacokinetics. Here, we describe an alternative antidiabetic strategy using agonistic anti-FGFR1 (FGF receptor 1) antibodies (R1MAbs) that mimic the metabolic effects of FGF21. A single injection of R1MAb into obese diabetic mice induced acute and sustained amelioration of hyperglycemia, along with marked improvement in hyperinsulinemia, hyperlipidemia, and hepatosteatosis. R1MAb activated the mitogen-activated protein kinase pathway in adipose tissues, but not in liver, and neither FGF21 nor R1MAb improved glucose clearance in lipoatrophic mice, which suggests that adipose tissues played a central role in the observed metabolic effects. In brown adipose tissues, both FGF21 and R1MAb induced phosphorylation of CREB (cyclic adenosine 5′-monophosphate response element–binding protein), and mRNA expression of PGC-1α (peroxisome proliferator–activated receptor-γ coactivator 1α) and the downstream genes associated with oxidative metabolism. Collectively, we propose FGFR1 in adipose tissues as a major functional receptor for FGF21, as an upstream regulator of PGC-1α, and as a compelling target for antibody-based therapy for type 2 diabetes and other obesity-associated disorders.


PLOS ONE | 2011

FGF19 Regulates Cell Proliferation, Glucose and Bile Acid Metabolism via FGFR4-Dependent and Independent Pathways

Ai-Luen Wu; Sally Coulter; Christopher Liddle; Anne Wong; Jeffrey Eastham-Anderson; Dorothy French; Andrew S. Peterson; Junichiro Sonoda

Fibroblast growth factor 19 (FGF19) is a hormone-like protein that regulates carbohydrate, lipid and bile acid metabolism. At supra-physiological doses, FGF19 also increases hepatocyte proliferation and induces hepatocellular carcinogenesis in mice. Much of FGF19 activity is attributed to the activation of the liver enriched FGF Receptor 4 (FGFR4), although FGF19 can activate other FGFRs in vitro in the presence of the coreceptor βKlotho (KLB). In this report, we investigate the role of FGFR4 in mediating FGF19 activity by using Fgfr4 deficient mice as well as a variant of FGF19 protein (FGF19v) which is specifically impaired in activating FGFR4. Our results demonstrate that FGFR4 activation mediates the induction of hepatocyte proliferation and the suppression of bile acid biosynthesis by FGF19, but is not essential for FGF19 to improve glucose and lipid metabolism in high fat diet fed mice as well as in leptin-deficient ob/ob mice. Thus, FGF19 acts through multiple receptor pathways to elicit pleiotropic effects in regulating nutrient metabolism and cell proliferation.


PLOS Biology | 2004

A Focused and Efficient Genetic Screening Strategy in the Mouse: Identification of Mutations That Disrupt Cortical Development

Konstantinos Zarbalis; Scott R. May; Yiguo Shen; Marc Ekker; John L.R. Rubenstein; Andrew S. Peterson

Although the mechanisms that regulate development of the cerebral cortex have begun to emerge, in large part through the analysis of mutant mice (Boncinelli et al. 2000; Molnar and Hannan 2000; Walsh and Goffinet 2000), many questions remain unanswered. To provide resources for further dissecting cortical development, we have carried out a focused screen for recessive mutations that disrupt cortical development. One aim of the screen was to identify mutants that disrupt the tangential migration of interneurons into the cortex. At the same time, we also screened for mutations that altered the growth or morphology of the cerebral cortex. We report here the identification of thirteen mutants with defects in aspects of cortical development ranging from the establishment of epithelial polarity to the invasion of thalamocortical axons. Among the collection are three novel alleles of genes for which mutant alleles had already been used to explore forebrain development, and four mutants with defects in interneuron migration. The mutants that we describe here will aid in deciphering the molecules and mechanisms that regulate cortical development. Our results also highlight the utility of focused screens in the mouse, in addition to the large-scale and broadly targeted screens that are being carried out at mutagenesis centers.


Journal of Cell Biology | 2011

Global defects in collagen secretion in a Mia3/TANGO1 knockout mouse

Deanna Grant Wilson; Khanhky Phamluong; Li Li; Mei Sun; Tim C. Cao; Peter Liu; Zora Modrusan; Wendy Sandoval; Linda Rangell; Richard A. D. Carano; Andrew S. Peterson; Mark Solloway

Mia3’s contribution to protein secretion is broader than previously realized—its absence impairs collagen deposition and normal development of cartilage and bone.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Cortical dysplasia and skull defects in mice with a Foxc1 allele reveal the role of meningeal differentiation in regulating cortical development

Konstantinos Zarbalis; Julie A. Siegenthaler; Youngshik Choe; Scott R. May; Andrew S. Peterson; Samuel J. Pleasure

We report the identification of a hypomorphic mouse allele for Foxc1 (Foxc1hith) that survives into adulthood revealing previously unknown roles for Foxc1 in development of the skull and cerebral cortex. This line of mice was recovered in a forward genetic screen using ENU mutagenesis to identify mutants with cortical defects. In the hith allele a missense mutation substitutes a Leu for a conserved Phe at amino acid 107, leading to destabilization of the protein without substantially altering transcriptional activity. Embryonic and postnatal histological analyses indicate that diminished Foxc1 protein expression in all three layers of meningeal cells in Foxc1hith/hith mice contributes to the cortical and skull defects in mutant mice and that the prominent phenotypes appear as the meninges differentiate into pia, arachnoid, and dura. Careful analysis of the cortical phenotypes shows that Foxc1hith/hith mice display detachment of radial glial endfeet, marginal zone heterotopias, and cortical dyslamination. These abnormalities have some features resembling defects in type 2 (cobblestone) lissencephaly or congenital muscular dystrophies but appear later in corticogenesis because of the delay in breakdown of the basement membrane. Our data reveal that the meninges regulate the development of the skull and cerebral cortex by controlling aspects of the formation of these neighboring structures. Furthermore, we provide evidence that defects in meningeal differentiation can lead to severe cortical dysplasia.

Collaboration


Dive into the Andrew S. Peterson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott R. May

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge