Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew Sharott is active.

Publication


Featured researches published by Andrew Sharott.


The Journal of Neuroscience | 2008

Disrupted Dopamine Transmission and the Emergence of Exaggerated Beta Oscillations in Subthalamic Nucleus and Cerebral Cortex

Nicolas Mallet; Alek Pogosyan; Andrew Sharott; Jozsef Csicsvari; J P Bolam; Peter Brown; Peter J. Magill

In the subthalamic nucleus (STN) of Parkinsons disease (PD) patients, a pronounced synchronization of oscillatory activity at beta frequencies (15–30 Hz) accompanies movement difficulties. Abnormal beta oscillations and motor symptoms are concomitantly and acutely suppressed by dopaminergic therapies, suggesting that these inappropriate rhythms might also emerge acutely from disrupted dopamine transmission. The neural basis of these abnormal beta oscillations is unclear, and how they might compromise information processing, or how they arise, is unknown. Using a 6-hydroxydopamine-lesioned rodent model of PD, we demonstrate that beta oscillations are inappropriately exaggerated, compared with controls, in a brain-state-dependent manner after chronic dopamine loss. Exaggerated beta oscillations are expressed at the levels of single neurons and small neuronal ensembles, and are focally present and spatially distributed within STN. They are also expressed in synchronous population activities, as evinced by oscillatory local field potentials, in STN and cortex. Excessively synchronized beta oscillations reduce the information coding capacity of STN neuronal ensembles, which may contribute to parkinsonian motor impairment. Acute disruption of dopamine transmission in control animals with antagonists of D1/D2 receptors did not exaggerate STN or cortical beta oscillations. Moreover, beta oscillations were not exaggerated until several days after 6-hydroxydopamine injections. Thus, contrary to predictions, abnormally amplified beta oscillations in cortico-STN circuits do not result simply from an acute absence of dopamine receptor stimulation, but are instead delayed sequelae of chronic dopamine depletion. Targeting the plastic processes underlying the delayed emergence of pathological beta oscillations after continuing dopaminergic dysfunction may offer considerable therapeutic promise.


European Journal of Neuroscience | 2005

Dopamine depletion increases the power and coherence of β-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat

Andrew Sharott; Peter J. Magill; Daniel Harnack; Wassilios G. Meissner; Peter Brown

Local field potentials (LFPs) recorded from the subthalamic nucleus (STN) of untreated patients implanted with stimulation electrodes for the treatment of Parkinsons disease (PD) demonstrate strong coherence with the cortical electroencephalogram over the β‐frequency range (15–30 Hz). However, studies in animal models of PD emphasize increased temporal coupling in cortico‐basal ganglia circuits at substantially lower frequencies, undermining the potential usefulness of these models. Here we show that 6‐hydroxydopamine (6‐OHDA) lesions of midbrain dopamine neurons are associated with significant increases in the power and coherence of β‐frequency oscillatory activity present in LFPs recorded from frontal cortex and STN of awake rats, as compared with the healthy animal. Thus, the pattern of synchronization between population activity in the STN and cortex in the 6‐OHDA‐lesioned rodent model of PD closely parallels that seen in the parkinsonian human. The peak frequency of coherent activity in the β‐frequency range was increased in lesioned animals during periods of spontaneous and sustained movement. Furthermore, administration of the dopamine receptor agonist apomorphine to lesioned animals suppressed β‐frequency oscillations, and increased coherent activity at higher frequencies in the cortex and STN, before producing the rotational behaviour indicative of successful lesion. Taken together, these results support a crucial role for dopamine in the modulation of population activity in cortico‐basal ganglia circuits, whereby dopaminergic mechanisms effectively filter out synchronized, rhythmic activity at β‐frequencies at the systems level, and shift temporal couplings in these circuits to higher frequencies. These changes may be important in regulating movement.


The Journal of Neuroscience | 2008

Patterns of Bidirectional Communication between Cortex and Basal Ganglia during Movement in Patients with Parkinson Disease

Elodie Lalo; Stéphane Thobois; Andrew Sharott; Gustavo Polo; Patrick Mertens; Alek Pogosyan; Peter Brown

Cortico-basal ganglia networks are considered to comprise several parallel and mostly segregated loops, where segregation is achieved in space through topographic connectivity. Recently, it has been suggested that functional segregation may also be achieved in the frequency domain, by selective coupling of related activities at different frequencies. So far, however, any coupling across frequency in the human has only been modeled in terms of unidirectional influences, a misplaced assumption given the looped architecture of the basal ganglia, and has been considered in static terms. Here, we investigate the pattern of bidirectional coupling between mesial and lateral cortical areas and the subthalamic nucleus (STN) at rest and during movement, with and without pharmacological dopaminergic input, in patients with Parkinsons disease. We simultaneously recorded scalp electroencephalographic activity and local field potentials from depth electrodes and deduced patterns of directed coherence between cortical and STN levels across three frequency bands [sub-β (3–13 Hz), β (14–35 Hz), γ (65–90 Hz)] in the different states. Our results show (1) asymmetric bidirectional coupling between STN and both mesial and lateral cortical areas with greater drives from cortex to STN at frequencies <35 Hz, (2) a drop of β band coupling driven from mesial cortex to STN during movement, and (3) an increase in symmetrical bidirectional drives between STN and mesial cortex and in lateral cortical drive to STN in the γ band after dopaminergic therapy. The results confirm a bidirectional pattern of cortico-basal ganglia communication that is differentially patterned across frequency bands and changes with movement and dopaminergic input.


The Journal of Neuroscience | 2009

Different Subtypes of Striatal Neurons Are Selectively Modulated by Cortical Oscillations

Andrew Sharott; Christian K. E. Moll; Gerhard Engler; Michael Denker; Sonja Grün; Andreas Engel

The striatum is the key site for cortical input to the basal ganglia. Cortical input to striatal microcircuits has been previously studied only in the context of one or two types of neurons. Here, we provide the first description of four putative types of striatal neurons (medium spiny, fast spiking, tonically active, and low-threshold spiking) in a single data set by separating extracellular recordings of sorted single spikes recorded under halothane anesthesia using waveform and burst parameters. Under halothane, the electrocorticograms and striatal local field potential displayed spontaneous oscillations at both low (2–9 Hz) and high (35–80 Hz) frequencies. Putative fast spiking interneurons were significantly more likely to phase lock to high-frequency cortical oscillations and displayed significant cross-correlations in this frequency range. These findings suggest that, as in neocortex and hippocampus, the coordinated activity of fast spiking interneurons may specifically be involved in mediating oscillatory synchronization in the striatum.


Experimental Neurology | 2002

Oscillatory local field potentials recorded from the subthalamic nucleus of the alert rat.

Peter Brown; Peter J. Magill; Andrew Sharott; Daniel Harnack; Wassilios G. Meissner

Hitherto, high-frequency local field potential oscillations in the upper gamma frequency band (40-80 Hz) have been recorded only from the region of subthalamic nucleus (STN) in parkinsonian patients treated with levodopa. Here we show that local field potentials recorded from the STN in the healthy alert rat also have a spectral peak in the upper gamma band (mean 53 Hz, range 46-70 Hz). The power of this high-frequency oscillatory activity was increased by 30 +/- 4% (+/-SEM) during motor activity compared to periods of alert immobility. It was also increased by 86 +/- 36% by systemic injection of the D2 dopamine receptor agonist quinpirole. The similarities between the high-frequency activities in the STN of the healthy rat and in the levodopa-treated parkinsonian human argue that this oscillatory activity may be physiological in nature and not a consequence of the parkinsonian state.


The Journal of Physiology | 2005

Directional analysis of coherent oscillatory field potentials in the cerebral cortex and basal ganglia of the rat

Andrew Sharott; Peter J. Magill; J. Paul Bolam; Peter Brown

Population activity in cortico‐basal ganglia circuits is synchronized at different frequencies according to brain state. However, the structures that are likely to drive the synchronization of activity in these circuits remain unclear. Furthermore, it is not known whether the direction of transmission of activity is fixed or dependent on brain state. We have used the directed transfer function (DTF) to investigate the direction in which coherent activity is effectively driven in cortico‐basal ganglia circuits. Local field potentials (LFPs) were simultaneously recorded in the subthalamic nucleus (STN), globus pallidus (GP) and substantia nigra pars reticulata (SNr), together with the ipsilateral frontal electrocorticogram (ECoG) of anaesthetized rats. Directional analysis was performed on recordings made during robust cortical slow‐wave activity (SWA) and ‘global activation’. During SWA, there was coherence at ∼1 Hz between ECoG and basal ganglia LFPs, with much of the coherent activity directed from cortex to basal ganglia. There were similar coherent activities at ∼1 Hz within the basal ganglia, with more activity directed from SNr to GP and STN, and from STN to GP rather than vice versa. During global activation, peaks in coherent activity were seen at higher frequencies (15–60 Hz), with most coherence also directed from cortex to basal ganglia. Within the basal ganglia, however, coherence was predominantly directed from GP to STN and SNr. Together, these results highlight a lead role for the cortex in activity relationships with the basal ganglia, and further suggest that the effective direction of coupling between basal ganglia nuclei is dynamically organized according to brain state, with activity relationships involving the GP displaying the greatest capacity to change.


The Journal of Neuroscience | 2015

Prototypic and Arkypallidal Neurons in the Dopamine-Intact External Globus Pallidus

Azzedine Abdi; Nicolas Mallet; Foad Y. Mohamed; Andrew Sharott; Paul D. Dodson; Kouichi Nakamura; Sana Suri; Sophie V. Avery; Joseph T. Larvin; Farid N. Garas; Shady N. Garas; Federica Vinciati; Stéphanie Morin; Erwan Bezard; Jérôme Baufreton; Peter J. Magill

Studies in dopamine-depleted rats indicate that the external globus pallidus (GPe) contains two main types of GABAergic projection cell; so-called “prototypic” and “arkypallidal” neurons. Here, we used correlative anatomical and electrophysiological approaches in rats to determine whether and how this dichotomous organization applies to the dopamine-intact GPe. Prototypic neurons coexpressed the transcription factors Nkx2-1 and Lhx6, comprised approximately two-thirds of all GPe neurons, and were the major GPe cell type innervating the subthalamic nucleus (STN). In contrast, arkypallidal neurons expressed the transcription factor FoxP2, constituted just over one-fourth of GPe neurons, and innervated the striatum but not STN. In anesthetized dopamine-intact rats, molecularly identified prototypic neurons fired at relatively high rates and with high regularity, regardless of brain state (slow-wave activity or spontaneous activation). On average, arkypallidal neurons fired at lower rates and regularities than prototypic neurons, and the two cell types could be further distinguished by the temporal coupling of their firing to ongoing cortical oscillations. Complementing the activity differences observed in vivo, the autonomous firing of identified arkypallidal neurons in vitro was slower and more variable than that of prototypic neurons, which tallied with arkypallidal neurons displaying lower amplitudes of a “persistent” sodium current important for such pacemaking. Arkypallidal neurons also exhibited weaker driven and rebound firing compared with prototypic neurons. In conclusion, our data support the concept that a dichotomous functional organization, as actioned by arkypallidal and prototypic neurons with specialized molecular, structural, and physiological properties, is fundamental to the operations of the dopamine-intact GPe.


The Journal of Neuroscience | 2006

Changes in Functional Connectivity within the Rat Striatopallidal Axis during Global Brain Activation In Vivo

Peter J. Magill; Alek Pogosyan; Andrew Sharott; Jozsef Csicsvari; J P Bolam; Peter Brown

The functional organization of the basal ganglia (BG) is often defined according to one of two opposing schemes. The first proposes multiple, essentially independent channels of information processing. The second posits convergence and lateral integration of striatal channels at the level of the globus pallidus (GP). We tested the hypothesis that these proposed aspects of functional connectivity within the striatopallidal axis are dynamic and related to brain state. Local field potentials (LFPs) were simultaneously recorded from multiple sites in striatum and GP in anesthetized rats during slow-wave activity (SWA) and during global activation evoked by sensory stimulation. Functional connectivity was inferred from comparative analyses of the internuclear and intranuclear coherence between bipolar derivations of LFPs. During prominent SWA, as shown in the electrocorticogram and local field potentials in the basal ganglia, intranuclear coherence, and, thus, lateral functional connectivity within striatum or globus pallidus was relatively weak. Furthermore, the temporal coupling of LFPs recorded across these two nuclei involved functional convergence at the level of GP. Global activation, indicated by a loss of SWA, was accompanied by a rapid functional reorganization of the striatopallidal axis. Prominent lateral functional connectivity developed within GP and, to a significantly more constrained spatial extent, striatum. Additionally, functional convergence on GP was no longer apparent, despite increased internuclear coherence. These data demonstrate that functional connectivity within the BG is highly dynamic and suggest that the relative expression of organizational principles, such as parallel, independent processing channels, striatopallidal convergence, and lateral integration within BG nuclei, is dependent on brain state.


Brain | 2008

Is the synchronization between pallidal and muscle activity in primary dystonia due to peripheral afferance or a motor drive

Andrew Sharott; Pascal Grosse; Andrea A. Kühn; Farid Salih; Andreas K. Engel; Gerd-Helge Schneider; Joachim K. Krauss; Peter Brown

The pathophysiological mechanisms of primary dystonia have largely remained obscure. Yet there is one undeniable observation: lesioning or high-frequency stimulation of the internal segment of the globus pallidus (GP) ameliorates dystonic symptoms. The latter observation implicates abnormal pallidal activity in the genesis of primary dystonia. Recently, excessive oscillatory pallidal activity in the 3-10 Hz frequency range, synchronized with dystonic EMG, has been related to the occurrence of involuntary muscle activity in these patients. However, it is unclear whether this pathological synchronization is driven by GP, caused by re-afference from dystonic muscle, or due to a combination of these two processes. Here we used the Directed Transfer Function as a spectral measure to identify the degree and direction of coupling across time between GP and muscle in seven patients with primary dystonia. We show that pallidal local field potential activity <or= 10 Hz is coherent with dystonic movements, and that although the coupling between GP and activity in the sternocleidomastoid muscle is bidirectional, the drive from GP to muscle significantly outweighs that from muscle to GP. In addition, the net GP drive to muscle is not stable but fluctuates across time, in keeping with the dynamic nature of dystonic muscle activity.


The Journal of Neuroscience | 2014

Activity parameters of subthalamic nucleus neurons selectively predict motor symptom severity in Parkinson's disease.

Andrew Sharott; Alessandro Gulberti; Simone Zittel; Adam A. Tudor Jones; Ulrich Fickel; Alexander Münchau; Johannes A. Köppen; Christian Gerloff; Manfred Westphal; Carsten Buhmann; Wolfgang Hamel; Andreas K. Engel; Christian K. E. Moll

Parkinsons disease (PD) is a heterogeneous disorder that leads to variable expression of several different motor symptoms. While changes in firing rate, pattern, and oscillation of basal ganglia neurons have been observed in PD patients and experimental animals, there is limited evidence linking them to specific motor symptoms. Here we examined this relationship using extracellular recordings of subthalamic nucleus neurons from 19 PD patients undergoing surgery for deep brain stimulation. For each patient, ≥10 single units and/or multi-units were recorded in the OFF medication state. We correlated the proportion of neurons displaying different activities with preoperative Unified Parkinsons Disease Rating Scale subscores (OFF medication). The mean spectral power at sub-beta frequencies and percentage of units oscillating at beta frequencies were positively correlated with the axial and limb rigidity scores, respectively. The percentage of units oscillating at gamma frequency was negatively correlated with the bradykinesia scores. The mean intraburst rate was positively correlated with both bradykinesia and axial scores, while the related ratio of interspike intervals below/above 10 ms was positively correlated with these symptoms and limb rigidity. None of the activity parameters correlated with tremor. The grand average of all the significantly correlated subthalamic nucleus activities accounted for >60% of the variance of the combined bradykinetic-rigid and axial scores. Our results demonstrate that the occurrence of alterations in the rate and pattern of basal ganglia neurons could partly underlie the variability in parkinsonian phenotype.

Collaboration


Dive into the Andrew Sharott's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Brown

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge