Andrew T. Carter
Norwich Research Park
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrew T. Carter.
BMC Genomics | 2009
Andrew T. Carter; Catherine J. Paul; David R. Mason; Susan M. Twine; Mark Alston; Susan M. Logan; John W. Austin; Michael W. Peck
BackgroundProteolytic Clostridium botulinum is the causative agent of botulism, a severe neuroparalytic illness. Given the severity of botulism, surprisingly little is known of the population structure, biology, phylogeny or evolution of C. botulinum. The recent determination of the genome sequence of C. botulinum has allowed comparative genomic indexing using a DNA microarray.ResultsWhole genome microarray analysis revealed that 63% of the coding sequences (CDSs) present in reference strain ATCC 3502 were common to all 61 widely-representative strains of proteolytic C. botulinum and the closely related C. sporogenes tested. This indicates a relatively stable genome. There was, however, evidence for recombination and genetic exchange, in particular within the neurotoxin gene and cluster (including transfer of neurotoxin genes to C. sporogenes), and the flagellar glycosylation island (FGI). These two loci appear to have evolved independently from each other, and from the remainder of the genetic complement. A number of strains were atypical; for example, while 10 out of 14 strains that formed type A1 toxin gave almost identical profiles in whole genome, neurotoxin cluster and FGI analyses, the other four strains showed divergent properties. Furthermore, a new neurotoxin sub-type (A5) has been discovered in strains from heroin-associated wound botulism cases. For the first time, differences in glycosylation profiles of the flagella could be linked to differences in the gene content of the FGI.ConclusionProteolytic C. botulinum has a stable genome backbone containing specific regions of genetic heterogeneity. These include the neurotoxin gene cluster and the FGI, each having evolved independently of each other and the remainder of the genetic complement. Analysis of these genetic components provides a high degree of discrimination of strains of proteolytic C. botulinum, and is suitable for clinical and forensic investigations of botulism outbreaks.
Food Microbiology | 2011
Michael W. Peck; Sandra C. Stringer; Andrew T. Carter
Foodborne botulism is a severe neuroparalytic disease caused by consumption of botulinum neurotoxin formed by strains of proteolytic Clostridium botulinum and non-proteolytic C. botulinum during their growth in food. The botulinum neurotoxin is the most potent substance known, with as little as 30-100 ng potentially fatal, and consumption of just a few milligrams of neurotoxin-containing food is likely to be sufficient to cause illness and potentially death. In order to minimise the foodborne botulism hazard, it is necessary to extend understanding of the biology of these bacteria. This process has been recently advanced by genome sequencing and subsequent analysis. In addition to neurotoxin formation, endospore formation is also critical to the success of proteolytic C. botulinum and non-proteolytic C. botulinum as foodborne pathogens. The endospores are highly resistant, and enable survival of adverse treatments such as heating. To better control the botulinum neurotoxin-forming clostridia, it is important to understand spore resistance mechanisms, and the physiological processes involved in germination and lag phase during recovery from this dormant state.
The Journal of Infectious Diseases | 2007
Sean Bosco Hanniffy; Andrew T. Carter; Ed Hitchin; Jerry M. Wells
BACKGROUND Economical and effective vaccines against Streptococcus pneumoniae (pneumococcus) are needed for implementation in poorer countries where the disease burden is highest. Here, we evaluated Lactococcus lactis intracellularly producing the pneumococcal surface protein A (PspA) as a mucosal vaccine in conferring protection against pneumococcal disease. METHODS Mice were intranasally (inl) immunized with the lactococcal vaccine. Control groups were also immunized with similar amounts of recombinant PspA administered inl or subcutaneously with alum. PspA-specific antibodies in serum samples and lung lavage fluids were measured before challenge in intraperitoneal sepsis and inl respiratory-infection models of pneumococcal disease. RESULTS The lactococcal vaccine afforded better protection against respiratory challenge with pneumococcus than did vaccination with purified antigen given inl or by injection with alum. This finding was associated with a shift toward a Th1-mediated immune response characterized by reduced antibody titers to the PspA antigen. In the sepsis model, the lactococcal vaccine afforded resistance to disease on a par with that obtained with the injected vaccine, demonstrating its efficacy against different forms of pneumococcal disease. CONCLUSION Given the safety profile of L. lactis, there is considerable potential to develop a pneumococcal vaccine for use in humans and to broaden this approach to combat other major pathogens.
Applied and Environmental Microbiology | 2000
Donald A. MacKenzie; Prasert Wongwathanarat; Andrew T. Carter; David B. Archer
ABSTRACT Mortierella alpina was transformed successfully to hygromycin B resistance by using a homologous histone H4 promoter to drive gene expression and a homologous ribosomal DNA region to promote chromosomal integration. This is the first description of transformation in this commercially important oleaginous organism. Two pairs of histone H3 and H4 genes were isolated from this fungus. Each pair consisted of one histone H3 gene and one histone H4 gene, transcribed divergently from an intergenic promoter region. The pairs of encoded histone H3 or H4 proteins were identical in amino acid sequence. At the DNA level, each histone H3 or H4 open reading frame showed 97 to 99% identity to its counterpart but the noncoding regions had little sequence identity. Unlike the histone genes from other filamentous fungi, all four M. alpina genes lacked introns. During normal vegetative growth, transcripts from the two histone H4 genes were produced at approximately the same level, indicating that either histone H4 promoter could be used in transformation vectors. The generation of stable, hygromycin B-resistant transformants required the incorporation of a homologous ribosomal DNA region into the transformation vector to promote chromosomal integration.
Research in Microbiology | 2015
Andrew T. Carter; Michael W. Peck
Recent developments in whole genome sequencing have made a substantial contribution to understanding the genomes, neurotoxins and biology of Clostridium botulinum Group I (proteolytic C. botulinum) and C. botulinum Group II (non-proteolytic C. botulinum). Two different approaches are used to study genomics in these bacteria; comparative whole genome microarrays and direct comparison of complete genome DNA sequences. The properties of the different types of neurotoxin formed, and different neurotoxin gene clusters found in C. botulinum Groups I and II are explored. Specific examples of botulinum neurotoxin genes are chosen for an in-depth discussion of neurotoxin gene evolution. The most recent cases of foodborne botulism are summarised.
BMC Genomics | 2013
Sandra C. Stringer; Andrew T. Carter; Martin D. Webb; Ewelina Wachnicka; Lisa Crossman; Mohammed Sebaihia; Michael W. Peck
BackgroundClostridium botulinum is a group of four physiologically and phylogenetically distinct bacteria that produce botulinum neurotoxin. While studies have characterised variability between strains of Group I (proteolytic) C. botulinum, the genetic and physiological variability and relationships between strains within Group II (non-proteolytic) C. botulinum are not well understood. In this study the genome of Group II strain C. botulinum Eklund 17B (NRP) was sequenced and used to construct a whole genome DNA microarray. This was used in a comparative genomic indexing study to compare the relatedness of 43 strains of Group II C. botulinum (14 type B, 24 type E and 5 type F). These results were compared with characteristics determined from physiological tests.ResultsWhole genome indexing showed that strains of Group II C. botulinum isolated from a wide variety of environments over more than 75 years clustered together indicating the genetic background of Group II C. botulinum is stable. Further analysis showed that strains forming type B or type F toxin are closely related with only toxin cluster genes targets being unique to either type. Strains producing type E toxin formed a separate subset. Carbohydrate fermentation tests supported the observation that type B and F strains form a separate subset to type E strains. All the type F strains and most of type B strains produced acid from amylopectin, amylose and glycogen whereas type E strains did not. However, these two subsets did not differ strongly in minimum growth temperature or maximum NaCl concentration for growth. No relationship was found between tellurite resistance and toxin type despite all the tested type B and type F strains carrying tehB, while the sequence was absent or diverged in all type E strains.ConclusionsAlthough Group II C. botulinum form a tight genetic group, genomic and physiological analysis indicates there are two distinct subsets within this group. All type B strains and type F strains are in one subset and all type E strains in the other.
Microbiology | 1999
Prasert Wongwathanarat; Louise V. Michaelson; Andrew T. Carter; C.M. Lazarus; Gareth Griffiths; A.K. Stobart; David B. Archer; Donald A. MacKenzie
Genes encoding two distinct fatty acid delta9-desaturases were isolated from strains of the oleaginous fungus Mortierella alpina. Two genomic sequences, delta9-1 and delta9-2, each containing a single intron, were cloned from strain CBS 528.72 while one cDNA clone, LM9, was isolated from strain CBS 210.32. The delta9-1 gene encoded a protein of 445 aa which shared 99% identity with the LM9 gene product. These proteins also showed 40-60% identity to the delta9-desaturases (Ole1p) of other fungi and contained the three conserved histidine boxes, C-terminal cytochrome b5 fusion and transmembrane domains characteristic of endoplasmic reticulum membrane-bound delta9-desaturases. LM9 and delta9-1 are therefore considered to represent the same gene (ole1). The ole1 gene was transcriptionally active in all M. alpina strains tested and its function was confirmed by complementation of the Saccharomyces cerevisiae ole1 mutation. Fatty acid analysis of yeast transformants expressing the CBS 210.32 ole1 gene showed an elevated level of oleic acid (18:1) compared to palmitoleic acid (16:1), the major fatty acid component of wild-type S. cerevisiae. This indicated that the M. alpina delta9-desaturase had a substrate preference for stearic acid (18:0) rather than palmitic acid (16:0). Genomic clone delta9-2 (ole2) also encoded a protein of 445 aa which had 86% identity to the delta9-1 and LM9 proteins and whose ORF also complemented the yeast ole1 mutation. The transcript from this gene could only be detected in one of the six M. alpina strains tested, suggesting that its expression may be strain-specific or induced under certain physiological conditions.
Nature Biotechnology | 1989
Bruce M. Pearson; Andrew T. Carter; Raymond Alexander Mckee
In this paper we describe two complementary approaches to a molecular taxonomy for the yeasts which exploit hybridisation to restriction fragments containing the repetitive sequence poly[dGdT.dCdA] (polyGT). This method will be of particular use to industrial users of the yeasts, whether they are brewers, bakers or other biotechnologists, since it has the potential to supplant the array of biochemical and physiological tests currently employed.
Microbiology | 2002
Donald A. MacKenzie; Andrew T. Carter; Prasert Wongwathanarat; John Eagles; Joanne Salt; David B. Archer
A third gene (Delta9-3) encoding a fatty acid Delta9-desaturase was isolated from the oil-producing fungus Mortierella alpina. The predicted protein of 512 aa shared 53% sequence identity with the two fatty acid Delta9-desaturases, ole1p and ole2p, already described in this organism and contained three histidine boxes, four putative transmembrane domains and a C-terminal cytochrome b(5) fusion that are typical of most fungal membrane-bound fatty acid desaturases. However, unlike the M. alpina ole1 and ole2 genes, the Delta9-3 ORF failed to complement the Saccharomyces cerevisiae ole1 mutation. GC-MS analysis of fatty-acid-supplemented ole1 yeast transformants containing the Delta9-3 gene indicated that this enzyme had negligible activity with endogenous palmitic acid (16:0) as substrate and moderate activity (30-65% desaturation) with endogenous stearic acid (18:0). Yeast transformants overexpressing any one of the three M. alpina fatty acid Delta9-desaturase genes or the S. cerevisiae OLE1 gene produced low amounts of hexacosenoic acid [26:1(n-9)], a fatty acid that is not normally present in yeast cells. It follows that these Delta9-desaturases may also display low n-9 desaturation activity with very long-chain saturated fatty acid substrates. Conversely, high levels of desaturase in the endoplasmic reticulum membrane of these yeast transformants may increase the availability of suitable monounsaturated substrates for fatty acid elongation.
Applied and Environmental Microbiology | 2008
Ingrid Artin; Andrew T. Carter; Elisabet Holst; Maria Lövenklev; David R. Mason; Michael W. Peck; Peter Rådström
ABSTRACT Carbon dioxide is an antimicrobial gas commonly used in modified atmosphere packaging. In the present study, the effects of carbon dioxide on the growth of and neurotoxin production by nonproteolytic Clostridium botulinum type E were studied during the growth cycle. Quantitative reverse transcription-PCR and an enzyme-linked immunosorbent assay were used to quantify expression of the type E botulinum neurotoxin gene (cntE) and the formation of type E neurotoxin. The expression levels of cntE were similar in two strains, with relative expression peaking in the transition between exponential phase and stationary phase. In stationary phase, cntE mRNA expression declined rapidly. The cntE mRNA half-life was calculated to be approximately 9 minutes. Neurotoxin formation occurred in late exponential phase and stationary phase. High carbon dioxide concentrations delayed growth by increasing the lag time and decreasing the maximum growth rate. The effects of carbon dioxide concentration on relative neurotoxin gene expression and neurotoxin formation were significant. Expression of cntE mRNA and the formation of extracellular neurotoxin were twofold higher with a headspace carbon dioxide concentration of 70% (vol/vol) compared to 10% (vol/vol). This finding sheds a new, cautionary light on the potential risks of botulism associated with the use of modified atmosphere packaging.