Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew T. Davidson is active.

Publication


Featured researches published by Andrew T. Davidson.


Global Change Biology | 2014

Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota

Andrew Constable; Jessica Melbourne-Thomas; Stuart Corney; Kevin R. Arrigo; Christophe Barbraud; David K. A. Barnes; Nl Bindoff; Philip W. Boyd; A. Brandt; Daniel P. Costa; Andrew T. Davidson; Hugh W. Ducklow; Louise Emmerson; Mitsuo Fukuchi; Julian Gutt; Mark A. Hindell; Eileen E. Hofmann; Graham W. Hosie; Takahiro Iida; Sarah Jacob; Nadine M. Johnston; So Kawaguchi; Nobuo Kokubun; Philippe Koubbi; Mary-Anne Lea; Azwianewi B. Makhado; Ra Massom; Klaus M. Meiners; Michael P. Meredith; Eugene J. Murphy

Antarctic and Southern Ocean (ASO) marine ecosystems have been changing for at least the last 30 years, including in response to increasing ocean temperatures and changes in the extent and seasonality of sea ice; the magnitude and direction of these changes differ between regions around Antarctica that could see populations of the same species changing differently in different regions. This article reviews current and expected changes in ASO physical habitats in response to climate change. It then reviews how these changes may impact the autecology of marine biota of this polar region: microbes, zooplankton, salps, Antarctic krill, fish, cephalopods, marine mammals, seabirds, and benthos. The general prognosis for ASO marine habitats is for an overall warming and freshening, strengthening of westerly winds, with a potential pole-ward movement of those winds and the frontal systems, and an increase in ocean eddy activity. Many habitat parameters will have regionally specific changes, particularly relating to sea ice characteristics and seasonal dynamics. Lower trophic levels are expected to move south as the ocean conditions in which they are currently found move pole-ward. For Antarctic krill and finfish, the latitudinal breadth of their range will depend on their tolerance of warming oceans and changes to productivity. Ocean acidification is a concern not only for calcifying organisms but also for crustaceans such as Antarctic krill; it is also likely to be the most important change in benthic habitats over the coming century. For marine mammals and birds, the expected changes primarily relate to their flexibility in moving to alternative locations for food and the energetic cost of longer or more complex foraging trips for those that are bound to breeding colonies. Few species are sufficiently well studied to make comprehensive species-specific vulnerability assessments possible. Priorities for future work are discussed.


Polar Biology | 1992

Protist abundance and carbon concentration during a Phaeocystis-dominated bloom at an Antarctic coastal site

Andrew T. Davidson; Harvey J. Marchant

SummaryChanges in the concentrations of bacteria, phytoplankton, protozoa, dissolved organic carbon (DOC), particulate organic carbon (POC), particulate carbohydrate (PCHO) and particulate organic nitrogen (PON) were followed throughout the summer at an Antarctic coastal site. The colonial prymnesiophyte Phaeocystis pouchetii was the first major phytoplankton species to bloom, reaching concentrations of 6 × 107 cells · 1−1 and remained numerically dominant for most of the summer. During the P. pouchetii bloom the concentration of most other autotrophs did not increase. Microheterotroph abundance peaked during or immediately after the Phaeocystis bloom. Their peak coincided with very high concentrations of organic carbon, particularly DOC which exceeded 100 mg · 1−1, and low bacterial abundance. Maximum bacterial abundance was reached after the decline in microheterotroph numbers. Bacterial utilization of carbon substrates and microheterotroph grazing of bacteria and uptake of DOC may form an important link to higher trophic levels during Antarctic Phaeocystis blooms.


Marine Biology | 1994

Effects of UV-B irradiation on growth and survival of Antarctic marine diatoms

Andrew T. Davidson; D. Bramich; H. J. Marchant; Andrew McMinn

Growth rate, survival, and stimulation of the production of UV-B (280 to 320 nm) absorbing compounds were investigated in cultures of five commonly occurring Antarctic marine diatoms exposed to a range of UV-B irradiances. Experimental UV-B exposures ranged from 20 to 650% of the measured peak surface irradiance at an Antarctic coastal site (0.533 J m-2 s-1). The five diatom species (Nitzschia lecointei, Proboscia alata, P. inermis, Thalassiosira tumida and Stellarima microtrias) appear capable of surviving two to four times this irradiance. In contrast to Phaeocystis cf. pouchetii, another major component of the Antarctic phytoplankton, the concentrations of pigments with discrete UV absorption peaks in diatoms were low and did not change significantly under increasing UV-B irradiance. Absorbance of UV-B by cells from which pigments had been extracted commonly greatly exceeded that of the pigments themselves. Most of this absorbance was due to oxidisable cell contents, with the frustule providing the remainder. Survival of diatoms did not correlate with absorption by either pigments, frustules or oxidisable cell contents, indicating that their survival under elevated UV-B irradiances results from processes other than screening mechanisms.


Antarctic Science | 2000

The distribution and abundance of viruses in the Southern Ocean during spring

Harvey J. Marchant; Andrew T. Davidson; Simon W. Wright; John Glazebrook

The concentrations of viruses, bacteria, chroococcoid cyanobacteria and chlorophyll a were determined in surface waters of the Southern Ocean during spring. Viral concentrations declined southward from around 4 × 106 ml−1 near Tasmania to a minimum of around 1 × 106 ml−1 at the Polar Front. South of the Front, virus concentrations increased again, reaching around 4 × 106 ml−1 in the sea-ice zone south of 60°S. Bacterial concentration decreased southwards across the Southern Ocean from around 6.5 × 105 ml−1 near Tasmania to < 1.0 × 105 ml−1 in the sea-ice zone. Cyanobacteria accounted for < 8% of the prokaryotes. There was no significant relationship between viral abundance and eithercyanobacterial or chl a concentration. Viral and bacterial concentrations were not significantly correlated north (P {0.10 < r < 0.20}) or south (P {0.20 < r < 0.5}) of the Polar Front. The virus to bacteria ratio (VBR) was between 3 and 15 in the open ocean but varied between 15 and 40 in the sea-ice region. These virus concentrations and VBRs indicate that viruses are no less important in Southern Ocean ecosystems than elsewhere in the worlds oceans.


FEMS Microbiology Ecology | 2008

Diversity and dynamics of Antarctic marine microbial eukaryotes under manipulated environmental UV radiation

Anouk M.-T. Piquet; Henk Bolhuis; Andrew T. Davidson; Paul G. Thomson; Anita Buma

In the light of the predicted global climate change, it is essential that the status and diversity of polar microbial communities is described and understood. In the present study, molecular tools were used to investigate the marine eukaryotic communities of Prydz Bay, Eastern Antarctica, from November 2002 to January 2003. Additionally, we conducted four series of minicosm experiments, where natural Prydz Bay communities were incubated under six different irradiation regimes, in order to investigate the effects of natural UV radiation on marine microbial eukaryotes. Denaturing gradient gel electrophoresis (DGGE) and 18S rRNA gene sequencing revealed a eukaryotic Shannon diversity index averaging 2.26 and 2.12, respectively. Phylogenetic analysis of 472 sequenced clones revealed 47 phylotypes, belonging to the Dinophyceae, Stramenopiles, Choanoflagellidae, Ciliophora, Cercozoa and Metazoa. Throughout the studied period, three communities were distinguished: a postwinter/early spring community comprising dinoflagellates, ciliates, cercozoans, stramenopiles, viridiplantae, haptophytes and metazoans; a dinoflagellate-dominated community; and a diatom-dominated community that developed after sea ice breakup. DGGE analysis showed that size fraction and time had a strong shaping effect on the community composition; however, a significant contribution of natural UV irradiance towards microeukaryotic community composition could not be detected. Overall, dinoflagellates dominated our samples and their diversity suggests that they fulfill an important role in Antarctic coastal marine ecosystems preceding ice breakup as well as between phytoplankton bloom events.


Journal of Plant Physiology | 2016

Southern Ocean phytoplankton physiology in a changing climate

Katherina Petrou; Sven A. Kranz; Scarlett Trimborn; Christel S. Hassler; Sonia Blanco Ameijeiras; Olivia Sackett; Peter J. Ralph; Andrew T. Davidson

The Southern Ocean (SO) is a major sink for anthropogenic atmospheric carbon dioxide (CO2), potentially harbouring even greater potential for additional sequestration of CO2 through enhanced phytoplankton productivity. In the SO, primary productivity is primarily driven by bottom up processes (physical and chemical conditions) which are spatially and temporally heterogeneous. Due to a paucity of trace metals (such as iron) and high variability in light, much of the SO is characterised by an ecological paradox of high macronutrient concentrations yet uncharacteristically low chlorophyll concentrations. It is expected that with increased anthropogenic CO2 emissions and the coincident warming, the major physical and chemical process that govern the SO will alter, influencing the biological capacity and functioning of the ecosystem. This review focuses on the SO primary producers and the bottom up processes that underpin their health and productivity. It looks at the major physico-chemical drivers of change in the SO, and based on current physiological knowledge, explores how these changes will likely manifest in phytoplankton, specifically, what are the physiological changes and floristic shifts that are likely to ensue and how this may translate into changes in the carbon sink capacity, net primary productivity and functionality of the SO.


Journal of Phycology | 2010

A new cell stage in the haploid-diploid life cycle of the colony-forming haptophyte Phaeocystis antarctica and its ecological implications.

Steffi Gaebler-Schwarz; Andrew T. Davidson; Philipp Assmy; Jixin Chen; Joachim Henjes; Eva-Maria Nöthig; Mirko Lunau; Linda Medlin

Few members of the well‐studied marine phytoplankton taxa have such a complex and polymorphic life cycle as the genus Phaeocystis. However, despite the ecological and biogeochemical importance of Phaeocystis blooms, the life cycle of the major bloom‐forming species of this genus remains illusive and poorly resolved. At least six different life stages and up to 15 different functional components of the life cycle have been proposed. Our culture and field observations indicate that there is a previously unrecognized stage in the life cycle of P. antarctica G. Karst. This stage comprises nonmotile cells that range in size from ∼4.2 to 9.8 μm in diameter and form aggregates in which interstitial spaces between cells are small or absent. The aggregates (hereafter called attached aggregates, AAs) adhere to available surfaces. In field samples, small AAs, surrounded by a colony skin, adopt an epiphytic lifestyle and adhere in most cases to setae or spines of diatoms. These AAs, either directly or via other life stages, produce the colonial life stage. Culture studies indicate that bloom‐forming, colonial stages release flagellates (microzoospores) that fuse and form AAs, which can proliferate on the bottom of culture vessels and can eventually reform free‐floating colonies. We propose that these AAs are a new stage in the life cycle of P. antarctica, which we believe to be the zygote, thus documenting sexual reproduction in this species for the first time.


Frontiers in Marine Science | 2017

Southern Ocean phytoplankton in a changing climate

Stacy Louise Deppeler; Andrew T. Davidson

Phytoplankton are the base of the Antarctic food web, sustain the wealth and diversity of life for which Antarctica is renowned, and play a critical role in biogeochemical cycles that mediate global climate. Over the vast expanse of the Southern Ocean (SO), the climate is variously predicted to experience increased warming, strengthening wind, acidification, shallowing mixed layer depths, increased light (and UV), changes in upwelling and nutrient replenishment, declining sea ice, reduced salinity, and the southward migration of ocean fronts. These changes are expected to alter the structure and function of phytoplankton communities in the SO. The diverse environments contained within the vast expanse of the SO will be impacted differently by climate change; causing the identity and the magnitude of environmental factors driving biotic change to vary within and among bioregions. Predicting the net effect of multiple climate-induced stressors over a range of environments is complex. Yet understanding the response of SO phytoplankton to climate change is vital if we are to predict the future state/s of the ecosystem, estimate the impacts on fisheries and endangered species, and accurately predict the effects of physical and biotic change in the SO on global climate. This review looks at the major environmental factors that define the structure and function of phytoplankton communities in the SO, examines the forecast changes in the SO environment, predicts the likely effect of these changes on phytoplankton, and considers the ramifications for trophodynamics and feedbacks to global climate change. Predictions strongly suggest that all regions of the SO will experience changes in phytoplankton productivity and community composition with climate change. The nature, and even the sign, of these changes varies within and among regions and will depend upon the magnitude and sequence in which these environmental changes are imposed. It is likely that predicted changes to phytoplankton communities will affect SO biogeochemistry, carbon export, and nutrition for higher trophic levels.


Polar Biology | 2001

Grazing by the Antarctic sea-ice ciliate Pseudocohnilembus

Fiona J. Scott; Andrew T. Davidson; Harvey J. Marchant

Abstract Potential uptake and clearance rates of fluorescent microspheres (FM) from 0.25 to 4.05 μm diameter were determined for the non-loricate ciliate Pseudocohnilembus sp. from Antarctic sea ice. The percentage of ciliate cells that ingested FM after 20 min incubation decreased with increasing particle diameter. Pseudocohnilembus sp. ingested FM between 0.25 and 4.05 μm in diameter. We offered FM at concentrations less than natural concentrations for plankton plus detrital material and obtained clearance rates less than those previously reported for bactivorous ciliates. Clearance rates were 3.6–5.4 nl cell−1 h−1 for FM 0.5 and 1 μm diameter, respectively, but decreased to 1.1 nl cell−1 h−1 for 1.97 μm diameter and 1.4 nl cell−1 h−1 for 4.05-μm-diameter FM. Clearance and uptake rates of FM 0.5 and 1 μm diameter indicate that Pseudocohnilembus sp. principally grazes on bacteria-sized particles. However, it can also ingest organisms as large as nanoplankton and may graze particles as small as femtoplankton and colloids. This suggests a feeding strategy that may suit the temporal and spatial changes in food availability in the sea-ice habitat.


Global Biogeochemical Cycles | 2015

The relation of mixed‐layer net community production to phytoplankton community composition in the Southern Ocean

Nicolas Cassar; Simon W. Wright; Paul G. Thomson; Thomas W. Trull; Karen J. Westwood; Miguel de Salas; Andrew T. Davidson; Imojen Pearce; Diana M. Davies; Richard J. Matear

Surface ocean productivity mediates the transfer of carbon to the deep ocean and in the process regulates atmospheric CO2 levels. A common axiom in oceanography is that large phytoplankton contribute disproportionally to the transfer of carbon to the deep ocean because of their greater ability to escape grazing pressure, build biomass, and sink. In the present study, we assessed the relationship of net community production to phytoplankton assemblages and plankton size distribution in the Sub-Antarctic Zone and northern reaches of the Polar Frontal Zone in the Australian sector of the Southern Ocean. We reanalyzed and synthesized previously published estimates of O2/Ar net community oxygen production (NCP) and triple-O2 isotopes gross primary oxygen production (GPP) along with microscopic and pigment analyses of the microbial community. Overall, we found that the axiom that large phytoplankton drive carbon export was not supported in this region. Mixed-layer-depth-integrated NCP was correlated to particulate organic carbon (POC) concentration in the mixed layer. While lower NCP/GPP and NCP/POC values were generally associated with communities dominated by smaller plankton size (as would be expected), these communities did not preclude high values for both properties. Vigorous NCP in some regions occurred in the virtual absence of large phytoplankton (and specifically diatoms) and in communities dominated by nanoplankton and picoplankton. We also observed a positive correlation between NCP and the proportion of the phytoplankton community grazed by microheterotrophs, supporting the mediating role of grazers in carbon export. The novel combination of techniques allowed us to determine how NCP relates to upper ocean ecosystem characteristics and may lead to improved models of carbon export.

Collaboration


Dive into the Andrew T. Davidson's collaboration.

Top Co-Authors

Avatar

Simon W. Wright

Australian Antarctic Division

View shared research outputs
Top Co-Authors

Avatar

Paul G. Thomson

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Harvey J. Marchant

Australian Antarctic Division

View shared research outputs
Top Co-Authors

Avatar

Karen J. Westwood

Australian Antarctic Division

View shared research outputs
Top Co-Authors

Avatar

Rick van den Enden

Australian Antarctic Division

View shared research outputs
Top Co-Authors

Avatar

Imojen Pearce

Australian Antarctic Division

View shared research outputs
Top Co-Authors

Avatar

Fiona J. Scott

Australian Antarctic Division

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tr Vance

Cooperative Research Centre

View shared research outputs
Top Co-Authors

Avatar

Geraldine V. Nash

Australian Antarctic Division

View shared research outputs
Researchain Logo
Decentralizing Knowledge