Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew T. Watt is active.

Publication


Featured researches published by Andrew T. Watt.


Molecular Cell | 2010

The Nuclear-Retained Noncoding RNA MALAT1 Regulates Alternative Splicing by Modulating SR Splicing Factor Phosphorylation

Vidisha Tripathi; Jonathan D. Ellis; Zhen Shen; David Y. Song; Qun Pan; Andrew T. Watt; Susan M. Freier; C. Frank Bennett; Alok Sharma; Paula A. Bubulya; Benjamin J. Blencowe; Supriya G. Prasanth; Kannanganattu V. Prasanth

Alternative splicing (AS) of pre-mRNA is utilized by higher eukaryotes to achieve increased transcriptome and proteomic complexity. The serine/arginine (SR) splicing factors regulate tissue- or cell-type-specific AS in a concentration- and phosphorylation-dependent manner. However, the mechanisms that modulate the cellular levels of active SR proteins remain to be elucidated. In the present study, we provide evidence for a role for the long nuclear-retained regulatory RNA (nrRNA), MALAT1 in AS regulation. MALAT1 interacts with SR proteins and influences the distribution of these and other splicing factors in nuclear speckle domains. Depletion of MALAT1 or overexpression of an SR protein changes the AS of a similar set of endogenous pre-mRNAs. Furthermore, MALAT1 regulates cellular levels of phosphorylated forms of SR proteins. Taken together, our results suggest that MALAT1 regulates AS by modulating the levels of active SR proteins. Our results further highlight the role for an nrRNA in the regulation of gene expression.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration.

Clotilde Lagier-Tourenne; Michael Baughn; Frank Rigo; Shuying Sun; Patrick Liu; Hairi Li; Jie Jiang; Andrew T. Watt; Seung Chun; Melanie Katz; Jinsong Qiu; Ying Sun; Shuo-Chien Ling; Qiang Zhu; Magdalini Polymenidou; Kevin Drenner; Jonathan W. Artates; Melissa McAlonis-Downes; Sebastian Markmiller; Kasey R. Hutt; Donald P. Pizzo; Janet Cady; Matthew B. Harms; Robert H. Baloh; Scott R. VandenBerg; Gene W. Yeo; Xiang-Dong Fu; C. Frank Bennett; Don W. Cleveland; John Ravits

Significance The most frequent genetic cause of ALS and frontotemporal degeneration is a hexanucleotide expansion in a noncoding region of the C9orf72 gene. Similar to other repeat expansion diseases, we characterize the hallmark feature of repeat expansion RNA-mediated toxicity: nuclear RNA foci. Remarkably, two distinct sets of foci are found, one containing RNAs transcribed in the sense direction and the other containing antisense RNAs. Antisense oligonucleotides (ASOs) are developed that selectively target sense strand repeat-containing RNAs and reduce sense-oriented foci without affecting overall C9orf72 expression. Importantly, reducing C9orf72 expression does not cause behavioral or pathological changes in mice and induces only a few genome-wide mRNA alterations. These findings establish ASO-mediated degradation of repeat-containing RNAs as a significant therapeutic approach. Expanded hexanucleotide repeats in the chromosome 9 open reading frame 72 (C9orf72) gene are the most common genetic cause of ALS and frontotemporal degeneration (FTD). Here, we identify nuclear RNA foci containing the hexanucleotide expansion (GGGGCC) in patient cells, including white blood cells, fibroblasts, glia, and multiple neuronal cell types (spinal motor, cortical, hippocampal, and cerebellar neurons). RNA foci are not present in sporadic ALS, familial ALS/FTD caused by other mutations (SOD1, TDP-43, or tau), Parkinson disease, or nonneurological controls. Antisense oligonucleotides (ASOs) are identified that reduce GGGGCC-containing nuclear foci without altering overall C9orf72 RNA levels. By contrast, siRNAs fail to reduce nuclear RNA foci despite marked reduction in overall C9orf72 RNAs. Sustained ASO-mediated lowering of C9orf72 RNAs throughout the CNS of mice is demonstrated to be well tolerated, producing no behavioral or pathological features characteristic of ALS/FTD and only limited RNA expression alterations. Genome-wide RNA profiling identifies an RNA signature in fibroblasts from patients with C9orf72 expansion. ASOs targeting sense strand repeat-containing RNAs do not correct this signature, a failure that may be explained, at least in part, by discovery of abundant RNA foci with C9orf72 repeats transcribed in the antisense (GGCCCC) direction, which are not affected by sense strand-targeting ASOs. Taken together, these findings support a therapeutic approach by ASO administration to reduce hexanucleotide repeat-containing RNAs and raise the potential importance of targeting expanded RNAs transcribed in both directions.


Pain | 2002

Analgesic profile of intrathecal P2X3 antisense oligonucleotide treatment in chronic inflammatory and neuropathic pain states in rats

Prisca Honore; Karen Kage; Joseph P. Mikusa; Andrew T. Watt; Joseph F. Johnston; Jacqueline R. Wyatt; Connie R. Faltynek; Michael F. Jarvis; Kevin R. Lynch

&NA; Extracellular adenosine triphosphate (ATP), acting at P2X ionotropic receptors, is implicated in numerous sensory processes. Exogenous ATP has been shown to be algogenic in both animals and humans. Research focus has been directed towards the P2X3 receptor, as it is preferentially expressed on nociceptive C‐fibers and its implication in pain processing is supported by an altered nociceptive phenotype in P2X3 knock‐out mice. In order to further characterize the role of P2X3 receptor activation in nociception, we evaluated the effects of continuous intrathecal administration of P2X3 antisense oligonucleotides for 7 days in the rat. P2X3 receptor antisense oligonucleotide treatment significantly decreased nociceptive behaviors observed after injection of complete Freunds adjuvant (CFA), formalin or &agr;&bgr;‐methylene ATP into the rats hind paw. The anti‐hyperalgesic effects of the antisense treatment in the CFA model of inflammatory pain were dose related. Similar effects were observed with two distinct P2X3 antisense oligonucleotides. These behavioral effects were significantly correlated with a decrease in P2X3 receptor protein expression in the dorsal root ganglia (DRG). In contrast, a decrease in P2X3 receptor protein expression in the DRG did not affect nociceptive behavior in the carrageenan model of acute thermal hyperalgesia. P2X3 receptor antisense oligonucleotide treatment also significantly reduced mechanical allodynia observed after spinal nerve ligation. Overall, the present data demonstrate that activation of P2X3 receptors contribute to the expression of chronic inflammatory and neuropathic pain states and that relief form these forms of chronic pain might be achieved by selective blockade of P2X3 receptor expression or activation.


Nucleic Acids Research | 2013

Rational design of antisense oligonucleotides targeting single nucleotide polymorphisms for potent and allele selective suppression of mutant Huntingtin in the CNS.

Michael E. Østergaard; Amber L. Southwell; Holly Kordasiewicz; Andrew T. Watt; Niels H. Skotte; Crystal N. Doty; Kuljeet Vaid; Erika B. Villanueva; Eric E. Swayze; C. Frank Bennett; Michael R. Hayden; Punit P. Seth

Autosomal dominant diseases such as Huntington’s disease (HD) are caused by a gain of function mutant protein and/or RNA. An ideal treatment for these diseases is to selectively suppress expression of the mutant allele while preserving expression of the wild-type variant. RNase H active antisense oligonucleotides (ASOs) or small interfering RNAs can achieve allele selective suppression of gene expression by targeting single nucleotide polymorphisms (SNPs) associated with the repeat expansion. ASOs have been previously shown to discriminate single nucleotide changes in targeted RNAs with ∼5-fold selectivity. Based on RNase H enzymology, we enhanced single nucleotide discrimination by positional incorporation of chemical modifications within the oligonucleotide to limit RNase H cleavage of the non-targeted transcript. The resulting oligonucleotides demonstrate >100-fold discrimination for a single nucleotide change at an SNP site in the disease causing huntingtin mRNA, in patient cells and in a completely humanized mouse model of HD. The modified ASOs were also well tolerated after injection into the central nervous system of wild-type animals, suggesting that their tolerability profile is suitable for advancement as potential allele-selective HD therapeutics. Our findings lay the foundation for efficient allele-selective downregulation of gene expression using ASOs—an outcome with broad application to HD and other dominant genetic disorders.


FEBS Letters | 2011

Control of RNA processing by a large non-coding RNA over-expressed in carcinomas

Rui Lin; Manami Roychowdhury-Saha; Chris Black; Andrew T. Watt; Eric G. Marcusson; Susan M. Freier; Thomas S. Edgington

RNA processing is vital for the high fidelity and diversity of eukaryotic transcriptomes and the encoded proteomes. However, control of RNA processing is not fully established. Σ RNA is a class of conserved large non‐coding RNAs (murine Hepcarcin; human MALAT‐1) up‐regulated in carcinomas. Using antisense technology, we identified that RNA post‐transcriptional modification is the most significant global function of Σ RNA. Specifically, processing of the pre‐mRNAs of genes including Tissue Factor and Endoglin was altered by hydrolysis of Σ RNA/MALAT‐1. These results support the hypothesis that Σ RNA/MALAT‐1 is a regulatory molecule exerting roles in RNA post‐transcriptional modification.


Molecular Therapy | 2014

In vivo evaluation of candidate allele-specific mutant huntingtin gene silencing antisense oligonucleotides.

Amber L. Southwell; Niels H. Skotte; Holly Kordasiewicz; Michael E. Østergaard; Andrew T. Watt; Jeffrey B. Carroll; Crystal N. Doty; Erika B. Villanueva; Eugenia Petoukhov; Kuljeet Vaid; Yuanyun Xie; Susan M. Freier; Eric E. Swayze; Punit P. Seth; C. Bennett; Michael R. Hayden

Huntington disease (HD) is a dominant, genetic neurodegenerative disease characterized by progressive loss of voluntary motor control, psychiatric disturbance, and cognitive decline, for which there is currently no disease-modifying therapy. HD is caused by the expansion of a CAG tract in the huntingtin (HTT) gene. The mutant HTT protein (muHTT) acquires toxic functions, and there is significant evidence that muHTT lowering would be therapeutically efficacious. However, the wild-type HTT protein (wtHTT) serves vital functions, making allele-specific muHTT lowering strategies potentially safer than nonselective strategies. CAG tract expansion is associated with single nucleotide polymorphisms (SNPs) that can be targeted by gene silencing reagents such as antisense oligonucleotides (ASOs) to accomplish allele-specific muHTT lowering. Here we evaluate ASOs targeted to HD-associated SNPs in acute in vivo studies including screening, distribution, duration of action and dosing, using a humanized mouse model of HD, Hu97/18, that is heterozygous for the targeted SNPs. We have identified four well-tolerated lead ASOs that potently and selectively silence muHTT at a broad range of doses throughout the central nervous system for 16 weeks or more after a single intracerebroventricular (ICV) injection. With further validation, these ASOs could provide a therapeutic option for individuals afflicted with HD.


PLOS ONE | 2014

Allele-Specific Suppression of Mutant Huntingtin Using Antisense Oligonucleotides: Providing a Therapeutic Option for All Huntington Disease Patients

Niels H. Skotte; Amber L. Southwell; Michael E. Østergaard; Jeffrey B. Carroll; Simon C. Warby; Crystal N. Doty; Eugenia Petoukhov; Kuljeet Vaid; Holly Kordasiewicz; Andrew T. Watt; Susan M. Freier; Gene Hung; Punit P. Seth; C. Frank Bennett; Eric E. Swayze; Michael R. Hayden

Huntington disease (HD) is an inherited, fatal neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The mutant protein causes neuronal dysfunction and degeneration resulting in motor dysfunction, cognitive decline, and psychiatric disturbances. Currently, there is no disease altering treatment, and symptomatic therapy has limited benefit. The pathogenesis of HD is complicated and multiple pathways are compromised. Addressing the problem at its genetic root by suppressing mutant huntingtin expression is a promising therapeutic strategy for HD. We have developed and evaluated antisense oligonucleotides (ASOs) targeting single nucleotide polymorphisms that are significantly enriched on HD alleles (HD-SNPs). We describe our structure-activity relationship studies for ASO design and find that adjusting the SNP position within the gap, chemical modifications of the wings, and shortening the unmodified gap are critical for potent, specific, and well tolerated silencing of mutant huntingtin. Finally, we show that using two distinct ASO drugs targeting the two allelic variants of an HD-SNP could provide a therapeutic option for all persons with HD; allele-specifically for roughly half, and non-specifically for the remainder.


Journal of Clinical Investigation | 2014

Antisense oligonucleotide treatment ameliorates alpha-1 antitrypsin–related liver disease in mice

Shuling Guo; Sheri L. Booten; Mariam Aghajan; Gene Hung; Chenguang Zhao; Keith Blomenkamp; Danielle Gattis; Andrew T. Watt; Susan M. Freier; Jeffery H. Teckman; Michael L. McCaleb; Brett P. Monia

Alpha-1 antitrypsin deficiency (AATD) is a rare genetic disease that results from mutations in the alpha-1 antitrypsin (AAT) gene. The mutant AAT protein aggregates and accumulates in the liver leading to AATD liver disease, which is only treatable by liver transplant. The PiZ transgenic mouse strain expresses a human AAT (hAAT) transgene that contains the AATD-associated Glu342Lys mutation. PiZ mice exhibit many AATD symptoms, including AAT protein aggregates, increased hepatocyte death, and liver fibrosis. In the present study, we systemically treated PiZ mice with an antisense oligonucleotide targeted against hAAT (AAT-ASO) and found reductions in circulating levels of AAT and both soluble and aggregated AAT protein in the liver. Furthermore, AAT-ASO administration in these animals stopped liver disease progression after short-term treatment, reversed liver disease after long-term treatment, and prevented liver disease in young animals. Additionally, antisense oligonucleotide treatment markedly decreased liver fibrosis in this mouse model. Administration of AAT-ASO in nonhuman primates led to an approximately 80% reduction in levels of circulating normal AAT, demonstrating potential for this approach in higher species. Antisense oligonucleotides thus represent a promising therapy for AATD liver disease.


Nucleic Acid Therapeutics | 2015

Allele-Selective Inhibition of Mutant Huntingtin with 2-Thio- and C5- Triazolylphenyl-Deoxythymidine-Modified Antisense Oligonucleotides

Michael E. Østergaard; Pawan Kumar; Johs Nichols; Andrew T. Watt; Pawan K. Sharma; Poul Nielsen; Punit P. Seth

We report the effect of introducing a single incorporation of 2-thio-deoxythymidine (2S-dT) or C5-Triazolylphenyl-deoxythymidine (5-TrPh-dT) at four positions within the gap region of RNase H gapmer antisense oligonucleotides (ASOs) for reducing wild-type and mutant huntingtin mRNA in human patient fibroblasts. We show that these modifications can modulate processing of the ASO/RNA heteroduplexes by recombinant human RNase H1 in a position-dependent manner. We also created a structural model of the catalytic domain of human RNase H bound to ASO/RNA heteroduplexes to rationalize the activity and selectivity observations in cells and in the biochemical assays. Our results highlight the ability of chemical modifications in the gap region to produce profound changes in ASO behavior.


Immunobiology | 2016

Inhibition of the alternative complement pathway by antisense oligonucleotides targeting complement factor B improves lupus nephritis in mice

Tamar R. Grossman; Lisa A. Hettrick; Robert B. Johnson; Gene Hung; Raechel Peralta; Andrew T. Watt; Scott P. Henry; Peter Adamson; Brett P. Monia; Michael L. McCaleb

Systemic lupus erythematosus is an autoimmune disease that manifests in widespread complement activation and deposition of complement fragments in the kidney. The complement pathway is believed to play a significant role in the pathogenesis and in the development of lupus nephritis. Complement factor B is an important activator of the alternative complement pathway and increasing evidence supports reducing factor B as a potential novel therapy to lupus nephritis. Here we investigated whether pharmacological reduction of factor B expression using antisense oligonucleotides could be an effective approach for the treatment of lupus nephritis. We identified potent and well tolerated factor B antisense oligonucleotides that resulted in significant reductions in hepatic and plasma factor B levels when administered to normal mice. To test the effects of factor B antisense oligonucleotides on lupus nephritis, we used two different mouse models, NZB/W F1 and MRL/lpr mice, that exhibit lupus nephritis like renal pathology. Antisense oligonucleotides mediated reductions in circulating factor B levels were associated with significant improvements in renal pathology, reduced glomerular C3 deposition and proteinuria, and improved survival. These data support the strategy of using factor B antisense oligonucleotides for treatment of lupus nephritis in humans.

Collaboration


Dive into the Andrew T. Watt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge