Andrew Tm Bagshaw
University of Otago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrew Tm Bagshaw.
PLOS ONE | 2013
Sterling Sawaya; Andrew Tm Bagshaw; Emmanuel Buschiazzo; Pankaj Kumar; Shantanu Chowdhury; Michael A. Black; Neil J. Gemmell
Tandem repeats are genomic elements that are prone to changes in repeat number and are thus often polymorphic. These sequences are found at a high density at the start of human genes, in the gene’s promoter. Increasing empirical evidence suggests that length variation in these tandem repeats can affect gene regulation. One class of tandem repeats, known as microsatellites, rapidly alter in repeat number. Some of the genetic variation induced by microsatellites is known to result in phenotypic variation. Recently, our group developed a novel method for measuring the evolutionary conservation of microsatellites, and with it we discovered that human microsatellites near transcription start sites are often highly conserved. In this study, we examined the properties of microsatellites found in promoters. We found a high density of microsatellites at the start of genes. We showed that microsatellites are statistically associated with promoters using a wavelet analysis, which allowed us to test for associations on multiple scales and to control for other promoter related elements. Because promoter microsatellites tend to be G/C rich, we hypothesized that G/C rich regulatory elements may drive the association between microsatellites and promoters. Our results indicate that CpG islands, G-quadruplexes (G4) and untranslated regulatory regions have highly significant associations with microsatellites, but controlling for these elements in the analysis does not remove the association between microsatellites and promoters. Due to their intrinsic lability and their overlap with predicted functional elements, these results suggest that many promoter microsatellites have the potential to affect human phenotypes by generating mutations in regulatory elements, which may ultimately result in disease. We discuss the potential functions of human promoter microsatellites in this context.
BMC Genomics | 2008
Andrew Tm Bagshaw; Joel Pw Pitt; Neil J. Gemmell
BackgroundMicrosatellites are highly abundant in eukaryotic genomes but their function and evolution are not yet well understood. Their elevated mutation rate makes them ideal markers of genetic difference, but high levels of unexplained heterogeneity in mutation rates among microsatellites at different genomic locations need to be elucidated in order to improve the power and accuracy of the many types of study that use them as genetic markers. Recombination could contribute to this heterogeneity, since while replication errors are thought to be the predominant mechanism for microsatellite mutation, meiotic recombination is involved in some mutation events. There is also evidence suggesting that microsatellites could function as recombination signals. The yeast S. cerevisiae is a useful model organism with which to further explore the link between microsatellites and recombination, since it is very amenable to genetic study, and meiotic recombination hotspots have been mapped throughout its entire genome.ResultsWe examined in detail the relationship between microsatellites and hotspots of meiotic double-strand breaks, the precursors of meiotic recombination, throughout the S. cerevisiae genome. We included all tandem repeats with motif length (repeat period) between one and six base pairs. Long, short and two-copy arrays were considered separately. We found that long, mono-, di- and trinucleotide microsatellites are around twice as frequent in hot than non-hot intergenic regions. The associations are weak or absent for repeats with less than six copies, and also for microsatellites with 4–6 base pair motifs, but high-copy arrays with motif length greater than three are relatively very rare throughout the genome. We present evidence that the association between high-copy, short-motif microsatellites and recombination hotspots is not driven by effects on microsatellite distribution of other factors previously linked to both recombination and microsatellites, including transcription, GC-content and transposable elements.ConclusionOur findings suggest that a mutation bias relating to recombination hotspots causing repeats to form and grow, and/or regulation of a subset of hotspots by simple sequences, may be significant processes in yeast. Some previous evidence has cast doubt on both of these possibilities, and as a result they have not been explored on a large scale, but the strength of the association we report suggests that they deserve further experimental testing.
Molecular Biology and Evolution | 2008
Mikael Brandström; Andrew Tm Bagshaw; Neil J. Gemmell; Hans Ellegren
Although previous studies have failed to detect an association between microsatellite polymorphism and broadscale recombination rates in the human genome, there are several possible reasons why such a relationship could exist. For instance, there might be a direct link if recombination is mutagenic to microsatellite sequences or if polymorphic microsatellites act as recombination signals. Alternatively, recombination could exert an indirect effect by uncoupling of natural selection at linked loci, promoting polymorphism. As recombination is concentrated in narrow hotspot regions in the human genome, we investigated the relationship between microsatellite polymorphism and recombination hot spots. By using data from a common allele frequency database, we found several polymorphism estimates to be similar for hot spots and the genomic average. However, this is likely explained by an ascertainment bias because markers with high polymorphism information content are usually selected for genotyping in human populations and pedigrees. In contrast, by using an unbiased set of shotgun sequence data, we found an excess of microsatellite polymorphism in recombination hot spots of 14%. However, when other genomic variables are taken into account in a generalized model and using wavelet analysis, the effect is no longer detectable and the only firm predictor of microsatellite polymorphism is the incidence of SNPs and indels. One possible neutral explanation to these observations is that there is a common denominator affecting the local rate of mutation in unique as well as in repetitive DNA, for example, base composition.
Molecular and Cellular Biology | 2013
Xiaoping Cui; Zhengfei Lu; Aya Kurosawa; Lars Klemm; Andrew Tm Bagshaw; Albert G. Tsai; Neil J. Gemmell; Markus Müschen; Noritaka Adachi; Chih-Lin Hsieh; Michael R. Lieber
ABSTRACT The t(14;18) chromosomal translocation typically involves breakage at the bcl-2 major breakpoint region (MBR) to cause human follicular lymphoma. A theory to explain the striking propensity of the MBR breaks at three CpG clusters within the 175-bp MBR region invoked activation-induced deaminase (AID). In a test of that theory, we used here minichromosomal substrates in human pre-B cell lines. Consistent with the essential elements of the theory, we found that the MBR breakage process is indeed highly dependent on DNA methylation at the CpG sites and highly dependent on the AID enzyme to create lesions at peak locations within the MBR. Interestingly, breakage of the phosphodiester bonds at the AID-initiated MBR lesions is RAG dependent, but, unexpectedly, most are also dependent on Artemis. We found that Artemis is capable of nicking small heteroduplex structures and is even able to nick single-base mismatches. This raises the possibility that activated Artemis, derived from the unjoined D to JH DNA ends at the IgH locus on chromosome 14, nicks AID-generated TG mismatches at methyl CpG sites, and this would explain why the breaks at the chromosome 18 MBR occur within the same time window as those on chromosome 14.
BMC Genomics | 2006
Andrew Tm Bagshaw; Joel Pw Pitt; Neil J. Gemmell
BackgroundMeiotic recombination events have been found to concentrate in 1–2.5 kilo base regions, but these recombination hot spots do not share a consensus sequence and why they occur at specific sites is not fully understood. Some previous evidence suggests that poly-purine/poly-pyrimidine (poly-pu/py) tracts (PPTs), a class of sequence with distinctive biochemical properties, could be involved in recombination, but no general association of PPTs with meiotic recombination hot spots has previously been reported.ResultsWe used computational methods to investigate in detail the relationship between PPTs and hot spots. We show statistical associations of PPT frequency with hot spots of meiotic recombination initiating lesions, double-strand breaks, in the genome of the yeast S. cerevisiae and with experimentally well characterized human meiotic recombination hot spots. Supporting a possible role of poly-pu/py-rich sequences in hot spot recombination, we also found that all three single nucleotide polymorphisms previously shown to be associated with human hot spot activity changes occur within sequence contexts of 14 bp or longer that are 85% or more poly-pu/py and at least 70% G/C. These polymorphisms are all close to the hot spot mid points. Comparing the sequences of experimentally characterized human hot spots with the orthologous regions of the chimpanzee genome previously shown not to contain hot spots, we found that in all five cases in which comparisons for the hot spot central regions are possible with publicly available sequence data, there are differences near the human hot spot mid points within sequences 14 bp or longer consisting of more than 80% poly-pu/py and at least 50% G/C.ConclusionOur results, along with previous evidence for the unique biochemical properties and recombination-stimulating potential of poly-pu/py-rich sequences, suggest that the possible functional involvement of this type of sequence in meiotic recombination hot spots deserves further experimental exploration.
PLOS ONE | 2014
Monika Zavodna; Andrew Tm Bagshaw; Rudiger Brauning; Neil J. Gemmell
To date we have little knowledge of how accurate next-generation sequencing (NGS) technologies are in sequencing repetitive sequences beyond known limitations to accurately sequence homopolymers. Only a handful of previous reports have evaluated the potential of NGS for sequencing short tandem repeats (microsatellites) and no empirical study has compared and evaluated the performance of more than one NGS platform with the same dataset. Here we examined yeast microsatellite variants from both long-read (454-sequencing) and short-read (Illumina) NGS platforms and compared these to data derived through Sanger sequencing. In addition, we investigated any locus-specific biases and differences that might have resulted from variability in microsatellite repeat number, repeat motif or type of mutation. Out of 112 insertion/deletion variants identified among 45 microsatellite amplicons in our study, we found 87.5% agreement between the 454-platform and Sanger sequencing in frequency of variant detection after Benjamini-Hochberg correction for multiple tests. For a subset of 21 microsatellite amplicons derived from Illumina sequencing, the results of short-read platform were highly consistent with the other two platforms, with 100% agreement with 454-sequencing and 93.6% agreement with the Sanger method after Benjamini-Hochberg correction. We found that the microsatellite attributes copy number, repeat motif and type of mutation did not have a significant effect on differences seen between the sequencing platforms. We show that both long-read and short-read NGS platforms can be used to sequence short tandem repeats accurately, which makes it feasible to consider the use of these platforms in high-throughput genotyping. It appears the major requirement for achieving both high accuracy and rare variant detection in microsatellite genotyping is sufficient read depth coverage. This might be a challenge because each platform generates a consistent pattern of non-uniform sequence coverage, which, as our study suggests, may affect some types of tandem repeats more than others.
PLOS ONE | 2013
Andrew Tm Bagshaw; L. John Horwood; Youfang Liu; David M. Fergusson; Patrick F. Sullivan; Martin A. Kennedy
Variation in human intelligence is approximately 50% heritable, but understanding of the genes involved is limited. Several forms of genetic variation remain under-studied in relation to intelligence, one of which is copy number variation (CNV). Using single-nucleotide polymorphism (SNP) -based microarrays, we genotyped CNVs genome-wide in a birth cohort of 723 New Zealanders, and correlated them with four intelligence-related phenotypes. We found no significant association for any common CNV after false discovery correction, which is consistent with previous work. In contrast to a previous study, however, we found no effect on any cognitive measure of rare CNV burden, defined as total number of bases inserted or deleted in CNVs rarer than 5%. We discuss possible reasons for this failure to replicate, including interaction between CNV and aging in determining the effects of rare CNVs. While our results suggest that no CNV assayable by SNP chips contributes more than a very small amount to variation in human intelligence, it remains possible that common CNVs in segmental duplication arrays, which are not well covered by SNP chips, are important contributors.
Genome Biology and Evolution | 2017
Andrew Tm Bagshaw
Abstract Microsatellite repeat DNA is best known for its length mutability, which is implicated in several neurological diseases and cancers, and often exploited as a genetic marker. Less well-known is the body of work exploring the widespread and surprisingly diverse functional roles of microsatellites. Recently, emerging evidence includes the finding that normal microsatellite polymorphism contributes substantially to the heritability of human gene expression on a genome-wide scale, calling attention to the task of elucidating the mechanisms involved. At present, these are underexplored, but several themes have emerged. I review evidence demonstrating roles for microsatellites in modulation of transcription factor binding, spacing between promoter elements, enhancers, cytosine methylation, alternative splicing, mRNA stability, selection of transcription start and termination sites, unusual structural conformations, nucleosome positioning and modification, higher order chromatin structure, noncoding RNA, and meiotic recombination hot spots.
Nucleic Acids Research | 2018
Monika Zavodna; Andrew Tm Bagshaw; Rudiger Brauning; Neil J. Gemmell
Abstract Short tandem repeats (STR) are ubiquitous components of the genomic architecture of most living organisms. Recent work has highlighted the widespread functional significance of such repeats, particularly around gene regulation, but the mutational processes underlying the evolution of these highly abundant and highly variable sequences are not fully understood. Traditional models assume that strand misalignment during replication is the predominant mechanism, but empirical data suggest the involvement of other processes including recombination and transcription. Despite this evidence, the relative influences of these processes have not previously been tested experimentally on a genome-wide scale. Using deep sequencing, we identify mutations at >200 microsatellites, across 700 generations in replicated populations of two otherwise identical sexual and asexual Saccharomyces cerevisiae strains. Using generalized linear models, we investigate correlates of STR mutability including the nature of the mutation, STR composition and contextual factors including recombination, transcription and replication origins. Sexual capability was not a significant predictor of microsatellite mutability, but, intriguingly, we identify transcription as a significant positive predictor. We also find that STR density is substantially increased in regions neighboring, but not within, recombination hotspots.
Advances in Experimental Medicine and Biology | 2012
Sterling Sawaya; Andrew Tm Bagshaw; Emmanuel Buschiazzo; Neil J. Gemmell