Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew W. Moran is active.

Publication


Featured researches published by Andrew W. Moran.


Proceedings of the Nutrition Society | 2011

Glucose sensing and signalling; regulation of intestinal glucose transport

Soraya P. Shirazi-Beechey; Andrew W. Moran; Daniel J. Batchelor; Miran Al-Rammahi

Epithelial cells lining the inner surface of the intestinal epithelium are in direct contact with a lumenal environment that varies dramatically with diet. It has long been suggested that the intestinal epithelium can sense the nutrient composition of lumenal contents. It is only recently that the nature of intestinal nutrient-sensing molecules and underlying mechanisms have been elucidated. There are a number of nutrient sensors expressed on the luminal membrane of endocrine cells that are activated by various dietary nutrients. We showed that the intestinal glucose sensor, T1R2+T1R3 and the G-protein, gustducin are expressed in endocrine cells. Eliminating sweet transduction in mice in vivo by deletion of either gustducin or T1R3 prevented dietary monosaccharide- and artificial sweetener-induced up-regulation of the Na+/glucose cotransporter, SGLT1 observed in wild-type mice. Transgenic mice, lacking gustducin or T1R3 had deficiencies in secretion of glucagon-like peptide 1 (GLP-1) and, glucose-dependent insulinotrophic peptide (GIP). Furthermore, they had an abnormal insulin profile and prolonged elevation of postprandial blood glucose in response to orally ingested carbohydrates. GIP and GLP-1 increase insulin secretion, while glucagon-like peptide 2 (GLP-2) modulates intestinal growth, blood flow and expression of SGLT1. The receptor for GLP-2 resides in enteric neurons and not in any surface epithelial cells, suggesting the involvement of the enteric nervous system in SGLT1 up-regulation. The accessibility of the glucose sensor and the important role that it plays in regulation of intestinal glucose absorption and glucose homeostasis makes it an attractive nutritional and therapeutic target for manipulation.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2013

Sensing of amino acids by the gut-expressed taste receptor T1R1-T1R3 stimulates CCK secretion

Miran Al-Rammahi; Andrew W. Moran; Marco Marcello; Yuzo Ninomiya; Soraya P. Shirazi-Beechey

CCK is secreted by endocrine cells of the proximal intestine in response to dietary components, including amino acids. CCK plays a variety of roles in digestive processes, including inhibition of food intake, consistent with a role in satiety. In the lingual epithelium, the sensing of a broad spectrum of L-amino acids is accomplished by the heteromeric amino acid (umami) taste receptor (T1R1-T1R3). T1R1 and T1R3 subunits are also expressed in the intestine. A defining characteristic of umami sensing by T1R1-T1R3 is its potentiation by IMP or GMP. Furthermore, T1R1-T1R3 is not activated by Trp. We show here that, in response to L-amino acids (Phe, Leu, Glu, and Trp), but not D-amino acids, STC-1 enteroendocrine cells and mouse proximal small intestinal tissue explants secrete CCK and that IMP enhances Phe-, Leu-, and Glu-induced, but not Trp-induced, CCK secretion. Furthermore, small interfering RNA inhibition of T1R1 expression in STC-1 cells results in significant diminution of Phe-, Leu-, and Glu-stimulated, but not Trp-stimulated, CCK release. In STC-1 cells and mouse intestine, gurmarin inhibits Phe-, Leu-, and Glu-induced, but not Trp-stimulated, CCK secretion. In contrast, the Ca(2+)-sensing receptor antagonist NPS2143 inhibits Phe-stimulated CCK release partially and Trp-induced CCK secretion totally in mouse intestine. However, NPS2143 has no effect on Leu- or Glu-induced CCK secretion. Collectively, our data demonstrate that functional characteristics and cellular location of the gut-expressed T1R1-T1R3 support its role as a luminal sensor for Phe-, Leu-, and Glu-induced CCK secretion.


British Journal of Nutrition | 2010

Expression of Na+/glucose co-transporter 1 (SGLT1) in the intestine of piglets weaned to different concentrations of dietary carbohydrate.

Andrew W. Moran; Miran Al-Rammahi; Daleep K. Arora; Daniel J. Batchelor; Erin A. Coulter; Catherine Ionescu; David Bravo; Soraya P. Shirazi-Beechey

Na+/glucose co-transporter 1 (SGLT1) transports dietary sugars from the lumen of the intestine into enterocytes. Regulation of this protein is essential for the provision of glucose to the body and, thus, is important for maintenance of glucose homeostasis. We have assessed expression of SGLT1 at mRNA, protein and functional levels in the intestinal tissue of 28 d old piglets weaned onto isoenergetic diets with differing concentrations of digestible carbohydrate (CHO). We show that expression of SGLT1 remains constant when piglets are fed up to 40 % CHO-containing diets. However, there is a significant increase in SGLT1 expression when the CHO content of the diet is>50 %. Morphometric analyses indicate that the increased expression is not due to a trophic effect. It has been proposed that in rat intestine, in response to a high-CHO diet, GLUT2 (the classical basolateral membrane monosaccharide transporter) is translocated to the luminal membrane of enterocytes to absorb excess dietary glucose. We show, using immunohistochemistry and Western blotting with antibodies raised to amino acids in different epitopes of GLUT2, that under all dietary conditions, low to high CHO, GLUT2 is expressed on the basolateral membrane of pig enterocytes. Furthermore, functional studies indicate that there is no uptake of 2-deoxy-D-glucopyranoside, a specific substrate of Na+-independent glucose transporters into brush-border membrane vesicles isolated from the intestines of piglets either maintained on low- or high-CHO diets. Thus, SGLT1 is the major route for absorption of dietary sugars across the luminal membrane of swine enterocytes.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2012

Expression of sweet receptor components in equine small intestine: relevance to intestinal glucose transport

Miran Al-Rammahi; Daleep K. Arora; Andrew W. Moran; C. J. Proudman; Yuzo Ninomiya; Soraya P. Shirazi-Beechey

The heteromeric sweet taste receptor T1R2-T1R3 is expressed on the luminal membrane of certain populations of enteroendocrine cells. Sensing of sugars and other sweet compounds by this receptor activates a pathway in enteroendocrine cells, resulting in secretion of a number of gut hormones, including glucagon-like peptide 2 (GLP-2). This subsequently leads to upregulation in the expression of intestinal Na(+)/glucose cotransporter, SGLT1, and increased intestinal glucose absorption. On the basis of the current information available on the horse genome sequence, it has been proposed that the gene for T1R2 (Tas1R2) is absent in the horse. We show here, however, that horses express both the mRNA and protein for T1R2. Equine T1R2 is most closely homologous to that in the pig and the cow. T1R2 protein, along with T1R3, α-gustducin, and GLP-2 proteins are coexpressed in equine intestinal endocrine cells. Intravenous administration of GLP-2, in rats and pigs, leads to an increase in the expression of SGLT1 in absorptive enterocytes and enhancement in blood glucose concentrations. GLP-2 receptor is expressed in enteric neurons, excluding the direct effect of GLP-2 on enterocytes. However, electric stimulation of enteric neurons generates a neural response leading to SGLT1 upregulation, suggesting that sugar in the intestine activates a reflex increase in the functional expression of SGLT1. Horses possess the ability to upregulate SGLT1 expression in response to increased dietary carbohydrates, and to enhance the capacity of the gut to absorb glucose. The gut sweet receptor provides an accessible target for manipulating the equine gut to absorb glucose (and water), allowing greater energy uptake and hydration for hard-working horses.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2011

Sodium/glucose cotransporter-1, sweet receptor, and disaccharidase expression in the intestine of the domestic dog and cat: two species of different dietary habit

Daniel J. Batchelor; Miran Al-Rammahi; Andrew W. Moran; Joseph G. Brand; Xia Li; Mark Haskins; Soraya P. Shirazi-Beechey

The domestic cat (Felis catus), a carnivore, naturally eats a very low carbohydrate diet. In contrast, the dog (Canis familiaris), a carno-omnivore, has a varied diet. This study was performed to determine the expression of the intestinal brush border membrane sodium/glucose cotransporter, SGLT1, sweet receptor, T1R2/T1R3, and disaccharidases in these species adapted to contrasting diets. The expression (this includes function) of SGLT1, sucrase, maltase and lactase were determined using purified brush border membrane vesicles and by quantitative immunohistochemistry of fixed tissues. The pattern of expression of subunits of the sweet receptor T1R2 and T1R3 was assessed using fluorescent immunohistochemistry. In proximal, middle, and distal small intestine, SGLT1 function in dogs was 1.9- to 2.3-fold higher than in cats (P = 0.037, P = 0.0011, P = 0.027, respectively), and SGLT1 protein abundance followed an identical pattern. Both cats and dogs express T1R3 in a subset of intestinal epithelial cells, and dogs, but not cats, express T1R2. In proximal and middle regions, there were 3.1- and 1.6-fold higher lactase (P = 0.006 and P = 0.019), 4.4- and 2.9-fold higher sucrase (both P < 0.0001), and 4.6- and 3.1-fold higher maltase activity (P = 0.0026 and P = 0.0005), respectively, in the intestine of dogs compared with cats. Dogs have a potential higher capacity to digest and absorb carbohydrates than cats. Cats may suffer from carbohydrate malabsorption following ingestion of high-carbohydrate meals. However, dogs have a digestive ability to cope with diets containing significant levels of carbohydrate.


British Journal of Nutrition | 2014

Role of nutrient-sensing taste 1 receptor (T1R) family members in gastrointestinal chemosensing

Soraya P. Shirazi-Beechey; Miran Al-Rammahi; Andrew W. Moran; David Bravo

Luminal nutrient sensing by G-protein-coupled receptors (GPCR) expressed on the apical domain of enteroendocrine cells activates intracellular pathways leading to secretion of gut hormones that control vital physiological processes such as digestion, absorption, food intake and glucose homeostasis. The taste 1 receptor (T1R) family of GPCR consists of three members: T1R1; T1R2; T1R3. Expression of T1R1, T1R2 and T1R3 at mRNA and protein levels has been demonstrated in the intestinal tissue of various species. It has been shown that T1R2-T1R3, in association with G-protein gustducin, is expressed in intestinal K and L endocrine cells, where it acts as the intestinal glucose (sweet) sensor. A number of studies have demonstrated that activation of T1R2-T1R3 by natural sugars and artificial sweeteners leads to secretion of glucagon-like peptides 1&2 (GLP-1 and GLP-2) and glucose dependent insulinotropic peptide (GIP). GLP-1 and GIP enhance insulin secretion; GLP-2 increases intestinal growth and glucose absorption. T1R1-T1R3 combination co-expressed on the apical domain of cholecystokinin (CCK) expressing cells is a luminal sensor for a number of L-amino acids; with amino acid-activation of the receptor eliciting CCK secretion. This article focuses on the role of the gut-expressed T1R1, T1R2 and T1R3 in intestinal sweet and L-amino acid sensing. The impact of exploiting T1R2-T1R3 as a nutritional target for enhancing intestinal glucose absorption and gut structural maturity in young animals is also highlighted.


Journal of Dairy Science | 2014

Sweet taste receptor expression in ruminant intestine and its activation by artificial sweeteners to regulate glucose absorption

Andrew W. Moran; Miran Al-Rammahi; C. Zhang; David Bravo; S. Calsamiglia; Soraya P. Shirazi-Beechey

Absorption of glucose from the lumen of the intestine into enterocytes is accomplished by sodium-glucose co-transporter 1 (SGLT1). In the majority of mammalian species, expression (this includes activity) of SGLT1 is upregulated in response to increased dietary monosaccharides. This regulatory pathway is initiated by sensing of luminal sugar by the gut-expressed sweet taste receptor. The objectives of our studies were to determine (1) if the ruminant intestine expresses the sweet taste receptor, which consists of two subunits [taste 1 receptor 2 (T1R2) and 3 (T1R3)], and other key signaling molecules required for SGLT1 upregulation in nonruminant intestines, and (2) whether T1R2-T1R3 sensing of artificial sweeteners induces release of glucagon-like peptide-2 (GLP-2) and enhances SGLT1 expression. We found that the small intestine of sheep and cattle express T1R2, T1R3, G-protein gustducin, and GLP-2 in enteroendocrine L-cells. Maintaining 110-d-old ruminating calves for 60d on a diet containing a starter concentrate and the artificial sweetener Sucram (consisting of saccharin and neohesperidin dihydrochalcone; Pancosma SA, Geneva, Switzerland) enhances (1) Na(+)-dependent d-glucose uptake by over 3-fold, (2) villus height and crypt depth by 1.4- and 1.2-fold, and (3) maltase- and alkaline phosphatase-specific activity by 1.5-fold compared to calves maintained on the same diet without Sucram. No statistically significant differences were observed for rates of intestinal glucose uptake, villus height, crypt depth, or enzyme activities between 50-d-old milk-fed calves and calves maintained on the same diet containing Sucram. When adult cows were kept on a diet containing 80:20 ryegrass hay-to-concentrate supplemented with Sucram, more than a 7-fold increase in SGLT1 protein abundance was noted. Collectively, the data indicate that inclusion of this artificial sweetener enhances SGLT1 expression and mucosal growth in ruminant animals. Exposure of ruminant sheep intestinal segments to saccharin or neohesperidin dihydrochalcone evokes secretion of GLP-2, the gut hormone known to enhance intestinal glucose absorption and mucosal growth. Artificial sweeteners, such as Sucram, at small concentrations are potent activators of T1R2-T1R3 (600-fold>glucose). This, combined with oral bioavailability of T1R2-T1R3 and the understanding that artificial sweetener-induced receptor activation evokes GLP-2 release (thus leading to increased SGLT1 expression and mucosal growth), make this receptor a suitable target for dietary manipulation.


Journal of Animal Science | 2011

NONRUMINANT NUTRITION SYMPOSIUM: Intestinal glucose sensing and regulation of glucose absorption: Implications for swine nutrition

Soraya P. Shirazi-Beechey; Andrew W. Moran; D. Bravo; Miran Al-Rammahi

The Na(+/)glucose cotransporter (SGLT1) is the major route for the transport of dietary sugars from the lumen of the intestine into enterocytes. Regulation of this protein is essential for the provision of glucose to the body and avoidance of intestinal malabsorption. This has important nutritional implications in particular for young and growing animals. It has been demonstrated that dietary sugars and artificial sweeteners increase SGLT1 expression and the capacity of the gut to absorb monosaccharides. Furthermore, diets supplemented with artificial sweeteners have been shown to improve growth and performance of weaning piglets. In this review, after describing the organization of intestinal epithelium, the type of gut hormones released in response to dietary carbohydrates, the mechanism underlying the transcellular transport of glucose in the intestine is outlined. Next, a historical background to the work carried out in various laboratories aimed at identifying molecular mechanisms involved in regulation of intestinal glucose transporter, SGLT1, is described. Subsequently, the more recent data on the role of intestinal glucose, or sweet, sensor T1R2 + T1R3, a G protein-coupled receptor, required for upregulation of SGLT1 by dietary sugars and artificial sweeteners, are presented. The glucose sensor subunits, T1R2 + T1R3, are members of the taste receptor family 1, T1R, and are expressed in the gut enteroendocrine cells. Sensing of dietary sugars and artificial sweeteners by T1R2 + T1R3 activates a pathway in endocrine cells leading to secretion of gut hormones. Finally, after describing molecular mechanisms by which a specific gut hormone released by endocrine cells may regulate SGLT1 expression in the neighboring absorptive enterocytes, the application of these findings to enhancing intestinal capacity to absorb dietary sugars in weaning piglets is presented. A better understanding of the molecular events involved in regulation of SGLT1 will allow the identification of nutritional targets with attendant promise of avoiding nutrient malabsorption and enhancing growth and well-being of species.


Experimental Physiology | 2014

Characterization of butyrate transport across the luminal membranes of equine large intestine

Taoufik Nedjadi; Andrew W. Moran; Miran Al-Rammahi; Soraya P. Shirazi-Beechey

What is the central question of this study? Butyrate, a product of colonic microbial fermentation of dietary fibre (grass), is a major source of energy for the horse and plays an important role in maintaining the health of the intestine. What are the properties of the membrane protein and what is the mechanism by which butyrate is absorbed in equine large intestine (colon)? What is the main finding and its importance? We have identified the mechanism of and membrane protein involved in butyrate transport in equine large intestine. This knowledge will allow rational approaches to the design of dietary formulations to enhance butyrate production and absorption in equine colon, in order to provide more energy for the horse and maintain its gut health.


Environmental Microbiology | 2017

Composition and diversity of mucosa‐associated microbiota along the entire length of the pig gastrointestinal tract; dietary influences

Jennifer Kelly; Andrew W. Moran; Sheila Ryan; David Bravo; Soraya P. Shirazi-Beechey

Mucosa-associated microbial populations of the gastrointestinal tract are in intimate contact with the outer mucus layer. This proximity offers these populations a higher potential, than lumenal microbiota, in exerting effects on the host. Functional characteristics of the microbiota and influences of host-physiology shape the composition and activity of the mucosa-associated bacterial community. We have shown previously that inclusion of an artificial sweetener, SUCRAM, included in the diet of weaning piglets modulates the composition of lumenal-residing gut microbiota and reduces weaning-related gastrointestinal disorders. In this study, using Illumina sequencing we characterised the mucosa-associated microbiota along the length of the intestine of piglets, and determined the effect of SUCRAM supplementation on mucosa-associated populations. There were clear distinctions in the composition of mucosa-associated microbiota, between small and large intestine, concordant with differences in regional oxygen distribution and nutrient provision by the host. There were significant differences in the composition of mucosa-associated compared with lumenal microbiota in pig caecum. Dietary supplementation with SUCRAM affected mucosa-associated bacterial community structure along the length of the intestinal tract. Most notably, there was a substantial reduction in predominant Campylobacter populations proposing that SUCRAM supplementation of swine diet has potential for reducing meat contamination and promoting food safety.

Collaboration


Dive into the Andrew W. Moran's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Bravo

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Zhang

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge