Andrew W. Woodham
University of Southern California
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrew W. Woodham.
Pm&r | 2010
Michael Freeman; Mark Woodham; Andrew W. Woodham
Low back pain (LBP), a highly prevalent problem in society, is often a recurrent condition. Recent advances in the understanding of the biomechanics of LBP have highlighted the importance of muscular stabilization of the “neutral zone” range of motion in the low back. The lumbar multifidus muscles (LMM) are important stabilizers of this neutral zone, and dysfunction in these muscles is strongly associated with LBP. The dysfunction is a result of pain inhibition from the spine, and it tends to continue even after the pain has resolved, likely contributing to the high recurrence rate of LBP. Persisting LMM dysfunction is identified by atrophic replacement of multifidus muscle with fat, a condition that is best seen on magnetic resonance imaging. Muscle training directed at teaching patients to activate their LMM is an important feature of any clinical approach to the LBP patient with demonstrated LMM dysfunction or atrophy.
Journal of Virology | 2013
Adam B. Raff; Andrew W. Woodham; Laura M. Raff; Joseph G. Skeate; Lisa Yan; Diane M. Da Silva; Mario Schelhaas; W. Martin Kast
ABSTRACT Human papillomaviruses (HPVs) infect epithelia and can lead to the development of lesions, some of which have malignant potential. HPV type 16 (HPV16) is the most oncogenic genotype and causes various types of cancer, including cervical, anal, and head and neck cancers. However, despite significant research, our understanding of the mechanism by which HPV16 binds to and enters host cells remains fragmented. Over several decades, many HPV receptors and entry pathways have been described. This review puts those studies into context and offers a model of HPV16 binding and entry as a framework for future research. Our model suggests that HPV16 binds to heparin sulfate proteoglycans (HSPGs) on either the epithelial cell surface or basement membrane through interactions with the L1 major capsid protein. Growth factor receptors may also become activated through HSPG/growth factor/HPV16 complexes that initiate signaling cascades during early virion-host cell interactions. After binding to HSPGs, the virion undergoes conformational changes, leading to isomerization by cyclophilin B and proprotein convertase-mediated L2 minor capsid protein cleavage that increases L2 N terminus exposure. Along with binding to HSPGs, HPV16 binds to α6 integrins, which initiate further intracellular signaling events. Following these primary binding events, HPV16 binds to a newly identified L2-specific receptor, the annexin A2 heterotetramer. Subsequently, clathrin-, caveolin-, lipid raft-, flotillin-, cholesterol-, and dynamin-independent endocytosis of HPV16 occurs.
PLOS ONE | 2012
Andrew W. Woodham; Diane M. Da Silva; Joseph G. Skeate; Adam B. Raff; Mark R. Ambroso; Heike E. Brand; J. Mario Isas; Ralf Langen; W. Martin Kast
Mucosotropic, high-risk human papillomaviruses (HPV) are sexually transmitted viruses that are causally associated with the development of cervical cancer. The most common high-risk genotype, HPV16, is an obligatory intracellular virus that must gain entry into host epithelial cells and deliver its double stranded DNA to the nucleus. HPV capsid proteins play a vital role in these steps. Despite the critical nature of these capsid protein-host cell interactions, the precise cellular components necessary for HPV16 infection of epithelial cells remains unknown. Several neutralizing epitopes have been identified for the HPV16 L2 minor capsid protein that can inhibit infection after initial attachment of the virus to the cell surface, which suggests an L2-specific secondary receptor or cofactor is required for infection, but so far no specific L2-receptor has been identified. Here, we demonstrate that the annexin A2 heterotetramer (A2t) contributes to HPV16 infection and co-immunoprecipitates with HPV16 particles on the surface of epithelial cells in an L2-dependent manner. Inhibiting A2t with an endogenous annexin A2 ligand, secretory leukocyte protease inhibitor (SLPI), or with an annexin A2 antibody significantly reduces HPV16 infection. With electron paramagnetic resonance, we demonstrate that a previously identified neutralizing epitope of L2 (aa 108–120) specifically interacts with the S100A10 subunit of A2t. Additionally, mutation of this L2 region significantly reduces binding to A2t and HPV16 pseudovirus infection. Furthermore, downregulation of A2t with shRNA significantly decreases capsid internalization and infection by HPV16. Taken together, these findings indicate that A2t contributes to HPV16 internalization and infection of epithelial cells and this interaction is dependent on the presence of the L2 minor capsid protein.
Scientific Reports | 2017
Jasdave S. Chahal; Tao Fang; Andrew W. Woodham; Omar F. Khan; Jingjing Ling; Daniel G. Anderson; Hidde L. Ploegh
The Zika virus (ZIKV) outbreak in the Americas and South Pacific poses a significant burden on human health because of ZIKV’s neurotropic effects in the course of fetal development. Vaccine candidates against ZIKV are coming online, but immunological tools to study anti-ZIKV responses in preclinical models, particularly T cell responses, remain sparse. We deployed RNA nanoparticle technology to create a vaccine candidate that elicited ZIKV E protein-specific IgG responses in C57BL/6 mice as assayed by ELISA. Using this tool, we identified a unique H-2Db-restricted epitope to which there was a CD8+ T cell response in mice immunized with our modified dendrimer-based RNA nanoparticle vaccine. These results demonstrate that this approach can be used to evaluate new candidate antigens and identify immune correlates without the use of live virus.
Human Vaccines & Immunotherapeutics | 2016
Joseph G. Skeate; Andrew W. Woodham; Mark H. Einstein; Diane M. Da Silva; W. Martin Kast
ABSTRACT Carcinomas of the anogenital tract, in particular cervical cancer, remains one of the most common cancers in women, and represent the most frequent gynecological malignancies and the fourth leading cause of cancer death in women worldwide. Human papillomavirus (HPV)-induced lesions are immunologically distinct in that they express viral antigens, which are necessary to maintain the cancerous phenotype. The causal relationship between HPV infection and anogenital cancer has prompted substantial interest in the development of therapeutic vaccines against high-risk HPV types targeting the viral oncoproteins E6 and E7. This review will focus on the most recent clinical trials for immunotherapies for mucosal HPV-induced lesions as well as emerging therapeutic strategies that have been tested in pre-clinical models for HPV-induced diseases. Progress in peptide- and protein-based vaccines, DNA-based vaccines, viral/bacterial vector-based vaccines, immune checkpoint inhibition, immune response modifiers, and adoptive cell therapy for HPV will be discussed.
Journal of Immunology | 2014
Andrew W. Woodham; Adam B. Raff; Laura M. Raff; Diane M. Da Silva; Lisa Yan; Joseph G. Skeate; Michael K. Wong; Yvonne G. Lin; W. Martin Kast
High-risk human papillomaviruses (HPVs) are sexually transmitted viruses causally associated with several cancers. During its natural life cycle, HPV16, the most common high-risk genotype, infects the epithelial basal cells in a process facilitated through a recently identified receptor, the annexin A2 heterotetramer (A2t). During infection, HPV16 also interacts with Langerhans cells (LC), the APC of the epithelium, inducing immune suppression, which is mediated by the HPV16 L2 minor capsid protein. Despite the importance of these virus-immune cell interactions, the specific mechanisms of HPV16 entry into LC and HPV16-induced immune suppression remain undefined. An N-terminal peptide of HPV16 L2 (aa 108–126) has been shown to specifically interact with A2t. In this study, we show that incubation of human LC with this peptide blocks binding of HPV16. Inhibiting this interaction with an A2t ligand or by small interfering RNA downregulation of A2t significantly decreases HPV16 internalization into LC in an L2-dependent manner. A2t is associated with suppression of LC maturation as demonstrated through attenuated secretion of Th1-associated cytokines and decreased surface expression of MHC class II on LC exposed to A2t. Conversely, small molecule inhibition of A2t prevents HPV16-induced suppression of LC immune function as indicated by significantly increased secretion of inflammatory cytokines and surface expression of CD86 in HPV16 treated LC pre-exposed to A2t inhibitors. These results demonstrate that HPV16 suppresses LC maturation through an interaction with A2t, revealing a novel role for this protein.
Journal of Antimicrobial Chemotherapy | 2015
Andrew W. Woodham; Julia R. Taylor; Andrew I. Jimenez; Joseph G. Skeate; Thomas Schmidt; Heike E. Brand; Diane M. Da Silva; W. Martin Kast
OBJECTIVES High-risk human papillomavirus (HPV) infection leads to the development of several human cancers that cause significant morbidity and mortality worldwide. HPV type 16 (HPV16) is the most common of the cancer-causing genotypes and gains entry to the basal cells of the epithelium through a non-canonical endocytic pathway that involves the annexin A2/S100A10 heterotetramer (A2t). A2t is composed of two annexin A2 monomers bound to an S100A10 dimer and this interaction is a potential target to block HPV16 infection. Here, recently identified small molecule inhibitors of A2t (A2ti) were investigated for their ability to prevent HPV16 infection in vitro. METHODS A2ti were added to HeLa cells in increasing concentrations prior to the addition of HPV16. Cytotoxicity was evaluated via trypan blue exclusion. HPV16 pseudovirion infection and fluorescently labelled HPV16 capsid internalization was measured with flow cytometry. RESULTS A2ti blocked HPV16 infection by 100% without substantial cellular toxicity or reduction in cell growth. Furthermore, A2ti blocked HPV16 entry into epithelial cells by 65%, indicating that the observed inhibition of HPV16 infection is in part due to a block in entry and that non-infectious entry may occur in the absence of A2t binding. CONCLUSIONS These results demonstrate that targeting A2t may be an effective strategy to prevent HPV16 infection.
Clinical Immunology | 2015
Diane M. Da Silva; Andrew W. Woodham; Joseph G. Skeate; Laurie K. Rijkee; Julia R. Taylor; Heike E. Brand; Laila I. Muderspach; Lynda D. Roman; Annie A. Yessaian; Huyen Q. Pham; Koji Matsuo; Yvonne G. Lin; Greg M. McKee; Andres M. Salazar; W. Martin Kast
Human papillomavirus (HPV)-mediated suppression of Langerhans cell (LC) function can lead to persistent infection and development of cervical intraepithelial neoplasia (CIN). Women with HPV-induced high-grade CIN2/3 have not mounted an effective immune response against HPV, yet it is unknown if LC-mediated T cell activation from such women is functionally impaired against HPV. We investigated the functional activation of in vitro generated LC and their ability to induce HPV16-specific T cells from CIN2/3 patients after exposure to HPV16 followed by treatment with stabilized Poly-I:C (s-Poly-I:C). LC from patients exposed to HPV16 demonstrated a lack of costimulatory molecule expression, inflammatory cytokine secretion, and chemokine-directed migration. Conversely, s-Poly-I:C caused significant phenotypic and functional activation of HPV16-exposed LC, which resulted in de novo generation of HPV16-specific CD8(+) T cells. Our results highlight that LC of women with a history of persistent HPV infection can present HPV antigens and are capable of inducing an adaptive T cell immune response when given the proper stimulus, suggesting that s-Poly-I:C compounds may be attractive immunomodulators for LC-mediated clearance of persistent HPV infection.
Journal of Radiology Case Reports | 2014
Mark Woodham; Andrew W. Woodham; Joseph W Skeate; Michael Freeman
A retrospective case series of three patients with chronic low back pain who received baseline MRI scans revealing multifidus muscle atrophy with fatty replacement is provided. Each patient received spinal manipulative therapy, and two were compliant with low back exercises targeting the multifidus. A follow-up scan performed >1 year later was compared to the baseline scan revealing a decrease in atrophy with fatty replacement in the two patients who performed multifidus-focused low back exercises (15% and 39% on the left and 7% and 32% on the right respectively), and an increase in the patient who underwent spinal manipulation alone (41% and 53%). Interestingly, the decrease in atrophy in the two patients that performed the exercises correlated to functional improvements. Though limited, these results highlight the utility of MRI in quantifying positive and negative long-term changes in multifidus atrophy, which may be an indicator of recovery in chronic low back pain patients.
Methods of Molecular Biology | 2015
Lisa Yan; Andrew W. Woodham; Diane M. Da Silva; W. Martin Kast
Langerhans cells (LCs) are antigen-presenting cells responsible for initiating an immune response against human papillomaviruses (HPVs) entering the epithelial layer in vivo as they are the first immune cell that HPV comes into contact with. LCs become activated in response to foreign antigens, which causes internal signaling resulting in the increased expression of co-stimulatory molecules and the secretion of inflammatory cytokines. Functionally activated LCs are then capable of migrating to the lymph nodes where they interact with antigen-specific T cells and initiate an adaptive T-cell response in vivo. However, HPV has evolved in a manner that suppresses LC function, and thus the induction of antigen-specific T cells is hindered. While many methods exist to monitor the activity of LCs in vitro, the migration and induction of cytotoxic T cells is ultimately indicative of a functional immune response. Here, methods in analyzing functional migration and induction of antigen-specific T cells after stimulation of LCs with HPV virus-like particles in vitro are described.