Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew Y. Ng is active.

Publication


Featured researches published by Andrew Y. Ng.


empirical methods in natural language processing | 2008

Cheap and Fast -- But is it Good? Evaluating Non-Expert Annotations for Natural Language Tasks

Rion Snow; Brendan O'Connor; Daniel Jurafsky; Andrew Y. Ng

Human linguistic annotation is crucial for many natural language processing tasks but can be expensive and time-consuming. We explore the use of Amazons Mechanical Turk system, a significantly cheaper and faster method for collecting annotations from a broad base of paid non-expert contributors over the Web. We investigate five tasks: affect recognition, word similarity, recognizing textual entailment, event temporal ordering, and word sense disambiguation. For all five, we show high agreement between Mechanical Turk non-expert annotations and existing gold standard labels provided by expert labelers. For the task of affect recognition, we also show that using non-expert labels for training machine learning algorithms can be as effective as using gold standard annotations from experts. We propose a technique for bias correction that significantly improves annotation quality on two tasks. We conclude that many large labeling tasks can be effectively designed and carried out in this method at a fraction of the usual expense.


international conference on machine learning | 2009

Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations

Honglak Lee; Roger B. Grosse; Rajesh Ranganath; Andrew Y. Ng

There has been much interest in unsupervised learning of hierarchical generative models such as deep belief networks. Scaling such models to full-sized, high-dimensional images remains a difficult problem. To address this problem, we present the convolutional deep belief network, a hierarchical generative model which scales to realistic image sizes. This model is translation-invariant and supports efficient bottom-up and top-down probabilistic inference. Key to our approach is probabilistic max-pooling, a novel technique which shrinks the representations of higher layers in a probabilistically sound way. Our experiments show that the algorithm learns useful high-level visual features, such as object parts, from unlabeled images of objects and natural scenes. We demonstrate excellent performance on several visual recognition tasks and show that our model can perform hierarchical (bottom-up and top-down) inference over full-sized images.


international conference on machine learning | 2000

Algorithms for Inverse Reinforcement Learning

Andrew Y. Ng; Stuart J. Russell

OBJECTIVE To evaluate the pharmacokinetics of a novel commercial formulation of ivermectin after administration to goats. ANIMALS 6 healthy adult goats. PROCEDURE Ivermectin (200 microg/kg) was initially administered IV to each goat, and plasma samples were obtained for 36 days. After a washout period of 3 weeks, each goat received a novel commercial formulation of ivermectin (200 microg/kg) by SC injection. Plasma samples were then obtained for 42 days. Drug concentrations were quantified by use of high-performance liquid chromatography with fluorescence detection. RESULTS Pharmacokinetics of ivermectin after IV administration were best described by a 2-compartment open model; values for main compartmental variables included volume of distribution at a steady state (9.94 L/kg), clearance (1.54 L/kg/d), and area under the plasma concentration-time curve (AUC; 143 [ng x d]/mL). Values for the noncompartmental variables included mean residence time (7.37 days), AUC (153 [ng x d]/mL), and clearance (1.43 L/kg/d). After SC administration, noncompartmental pharmacokinetic analysis was conducted. Values of the variables calculated by use of this method included maximum plasma concentration (Cmax; 21.8 ng/mL), time to reach Cmax (3 days), and bioavailability (F; 91.8%). CONCLUSIONS AND CLINICAL RELEVANCE The commercial formulation used in this study is a good option to consider when administering ivermectin to goats because of the high absorption, which is characterized by high values of F. In addition, the values of Cmax and time to reach Cmax are higher than those reported by other investigators who used other routes of administration.


computer vision and pattern recognition | 2011

Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis

Quoc V. Le; Will Y. Zou; Serena Yeung; Andrew Y. Ng

Previous work on action recognition has focused on adapting hand-designed local features, such as SIFT or HOG, from static images to the video domain. In this paper, we propose using unsupervised feature learning as a way to learn features directly from video data. More specifically, we present an extension of the Independent Subspace Analysis algorithm to learn invariant spatio-temporal features from unlabeled video data. We discovered that, despite its simplicity, this method performs surprisingly well when combined with deep learning techniques such as stacking and convolution to learn hierarchical representations. By replacing hand-designed features with our learned features, we achieve classification results superior to all previous published results on the Hollywood2, UCF, KTH and YouTube action recognition datasets. On the challenging Hollywood2 and YouTube action datasets we obtain 53.3% and 75.8% respectively, which are approximately 5% better than the current best published results. Further benefits of this method, such as the ease of training and the efficiency of training and prediction, will also be discussed. You can download our code and learned spatio-temporal features here: http://ai.stanford.edu/∼wzou/


The International Journal of Robotics Research | 2004

Simultaneous Localization and Mapping with Sparse Extended Information Filters

Sebastian Thrun; Yufeng Liu; Daphne Koller; Andrew Y. Ng; Zoubin Ghahramani; Hugh F. Durrant-Whyte

In this paper we describe a scalable algorithm for the simultaneous mapping and localization (SLAM) problem. SLAM is the problem of acquiring a map of a static environment with a mobile robot. The vast majority of SLAM algorithms are based on the extended Kalman filter (EKF). In this paper we advocate an algorithm that relies on the dual of the EKF, the extended information filter (EIF). We show that when represented in the information form, map posteriors are dominated by a small number of links that tie together nearby features in the map. This insight is developed into a sparse variant of the EIF, called the sparse extended information filter (SEIF). SEIFs represent maps by graphical networks of features that are locally interconnected, where links represent relative information between pairs of nearby features, as well as information about the robot’s pose relative to the map. We show that all essential update equations in SEIFs can be executed in constant time, irrespective of the size of the map. We also provide empirical results obtained for a benchmark data set collected in an outdoor environment, and using a multi-robot mapping simulation.


The International Journal of Robotics Research | 2008

Robotic Grasping of Novel Objects using Vision

Ashutosh Saxena; Justin Driemeyer; Andrew Y. Ng

We consider the problem of grasping novel objects, specifically objects that are being seen for the first time through vision. Grasping a previously unknown object, one for which a 3-d model is not available, is a challenging problem. Furthermore, even if given a model, one still has to decide where to grasp the object. We present a learning algorithm that neither requires nor tries to build a 3-d model of the object. Given two (or more) images of an object, our algorithm attempts to identify a few points in each image corresponding to good locations at which to grasp the object. This sparse set of points is then triangulated to obtain a 3-d location at which to attempt a grasp. This is in contrast to standard dense stereo, which tries to triangulate every single point in an image (and often fails to return a good 3-d model). Our algorithm for identifying grasp locations from an image is trained by means of supervised learning, using synthetic images for the training set. We demonstrate this approach on two robotic manipulation platforms. Our algorithm successfully grasps a wide variety of objects, such as plates, tape rolls, jugs, cellphones, keys, screwdrivers, staplers, a thick coil of wire, a strangely shaped power horn and others, none of which were seen in the training set. We also apply our method to the task of unloading items from dishwashers.


meeting of the association for computational linguistics | 2006

Semantic Taxonomy Induction from Heterogenous Evidence

Rion Snow; Daniel Jurafsky; Andrew Y. Ng

We propose a novel algorithm for inducing semantic taxonomies. Previous algorithms for taxonomy induction have typically focused on independent classifiers for discovering new single relationships based on hand-constructed or automatically discovered textual patterns. By contrast, our algorithm flexibly incorporates evidence from multiple classifiers over heterogenous relationships to optimize the entire structure of the taxonomy, using knowledge of a words coordinate terms to help in determining its hypernyms, and vice versa. We apply our algorithm on the problem of sense-disambiguated noun hyponym acquisition, where we combine the predictions of hypernym and coordinate term classifiers with the knowledge in a preexisting semantic taxonomy (WordNet 2.1). We add 10,000 novel synsets to WordNet 2.1 at 84% precision, a relative error reduction of 70% over a non-joint algorithm using the same component classifiers. Finally, we show that a taxonomy built using our algorithm shows a 23% relative F-score improvement over WordNet 2.1 on an independent testset of hypernym pairs.


International Journal of Computer Vision | 2008

3-D Depth Reconstruction from a Single Still Image

Ashutosh Saxena; Sung H. Chung; Andrew Y. Ng

Abstract We consider the task of 3-d depth estimation from a single still image. We take a supervised learning approach to this problem, in which we begin by collecting a training set of monocular images (of unstructured indoor and outdoor environments which include forests, sidewalks, trees, buildings, etc.) and their corresponding ground-truth depthmaps. Then, we apply supervised learning to predict the value of the depthmap as a function of the image. Depth estimation is a challenging problem, since local features alone are insufficient to estimate depth at a point, and one needs to consider the global context of the image. Our model uses a hierarchical, multiscale Markov Random Field (MRF) that incorporates multiscale local- and global-image features, and models the depths and the relation between depths at different points in the image. We show that, even on unstructured scenes, our algorithm is frequently able to recover fairly accurate depthmaps. We further propose a model that incorporates both monocular cues and stereo (triangulation) cues, to obtain significantly more accurate depth estimates than is possible using either monocular or stereo cues alone.


international joint conference on artificial intelligence | 1999

A sparse sampling algorithm for near-optimal planning in large Markov decision processes

Michael J. Kearns; Yishay Mansour; Andrew Y. Ng

A critical issue for the application of Markov decision processes (MDPs) to realistic problems is how the complexity of planning scales with the size of the MDP. In stochastic environments with very large or infinite state spaces, traditional planning and reinforcement learning algorithms may be inapplicable, since their running time typically grows linearly with the state space size in the worst case. In this paper we present a new algorithm that, given only a generative model (a natural and common type of simulator) for an arbitrary MDP, performs on-line, near-optimal planning with a per-state running time that has no dependence on the number of states. The running time is exponential in the horizon time (which depends only on the discount factor γ and the desired degree of approximation to the optimal policy). Our algorithm thus provides a different complexity trade-off than classical algorithms such as value iteration—rather than scaling linearly in both horizon time and state space size, our running time trades an exponential dependence on the former in exchange for no dependence on the latter.Our algorithm is based on the idea of sparse sampling. We prove that a randomly sampled look-ahead tree that covers only a vanishing fraction of the full look-ahead tree nevertheless suffices to compute near-optimal actions from any state of an MDP. Practical implementations of the algorithm are discussed, and we draw ties to our related recent results on finding a near-best strategy from a given class of strategies in very large partially observable MDPs (Kearns, Mansour, & Ng. Neural information processing systems 13, to appear).


computer vision and pattern recognition | 2005

Discriminative learning of Markov random fields for segmentation of 3D scan data

Dragomir Anguelov; B. Taskarf; V. Chatalbashev; Daphne Koller; D. Gupta; Geremy Heitz; Andrew Y. Ng

We address the problem of segmenting 3D scan data into objects or object classes. Our segmentation framework is based on a subclass of Markov random fields (MRFs) which support efficient graph-cut inference. The MRF models incorporate a large set of diverse features and enforce the preference that adjacent scan points have the same classification label. We use a recently proposed maximum-margin framework to discriminatively train the model from a set of labeled scans; as a result we automatically learn the relative importance of the features for the segmentation task. Performing graph-cut inference in the trained MRF can then be used to segment new scenes very efficiently. We test our approach on three large-scale datasets produced by different kinds of 3D sensors, showing its applicability to both outdoor and indoor environments containing diverse objects.

Collaboration


Dive into the Andrew Y. Ng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pieter Abbeel

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Honglak Lee

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge