Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrews Sobral is active.

Publication


Featured researches published by Andrews Sobral.


Computer Vision and Image Understanding | 2014

A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos

Andrews Sobral; Antoine Vacavant

Abstract Background subtraction (BS) is a crucial step in many computer vision systems, as it is first applied to detect moving objects within a video stream. Many algorithms have been designed to segment the foreground objects from the background of a sequence. In this article, we propose to use the BMC (Background Models Challenge) dataset, and to compare the 29 methods implemented in the BGSLibrary. From this large set of various BG methods, we have conducted a relevant experimental analysis to evaluate both their robustness and their practical performance in terms of processor/memory requirements.


Computer Science Review | 2017

Decomposition into low-rank plus additive matrices for background/foreground separation

Thierry Bouwmans; Andrews Sobral; Sajid Javed; Soon Ki Jung; El-hadi Zahzah

Background/foreground separation is the first step in video surveillance system to detect moving objects. Recent research on problem formulations based on decomposition into low-rank plus sparse matrices shows a suitable framework to separate moving objects from the background. The most representative problem formulation is the Robust Principal Component Analysis (RPCA) solved via Principal Component Pursuit (PCP) which decomposes a data matrix into a low-rank matrix and a sparse matrix. However, similar robust implicit or explicit decompositions can be made in the following problem formulations: Robust Non-negative Matrix Factorization (RNMF), Robust Matrix Completion (RMC), Robust Subspace Recovery (RSR), Robust Subspace Tracking (RST) and Robust Low-Rank Minimization (RLRM). The main goal of these similar problem formulations is to obtain explicitly or implicitly a decomposition into low-rank matrix plus additive matrices. These formulation problems differ from the implicit or explicit decomposition, the loss function, the optimization problem and the solvers. As the problem formulation can be NP-hard in its original formulation, and it can be convex or not following the constraints and the loss functions used, the key challenges concern the design of efficient relaxed models and solvers which have to be with iterations as few as possible, and as efficient as possible. In the application of background/foreground separation, constraints inherent to the specificities of the background and the foreground as the temporal and spatial properties need to be taken into account in the design of the problem formulation. Practically, the background sequence is then modeled by a low-rank subspace that can gradually change over time, while the moving foreground objects constitute the correlated sparse outliers. Although, many efforts have been made to develop methods for the decomposition into low-rank plus additive matrices that perform visually well in foreground detection with reducing their computational cost, no algorithm today seems to emerge and to be able to simultaneously address all the key challenges that accompany real-world videos. This is due, in part, to the absence of a rigorous quantitative evaluation with synthetic and realistic large-scale dataset with accurate ground truth providing a balanced coverage of the range of challenges present in the real world. In this context, this work aims to initiate a rigorous and comprehensive review of the similar problem formulations in robust subspace learning and tracking based on decomposition into low-rank plus additive matrices for testing and ranking existing algorithms for background/foreground separation. For this, we first provide a preliminary review of the recent developments in the different problem formulations which allows us to define a unified view that we called Decomposition into Low-rank plus Additive Matrices (DLAM). Then, we examine carefully each method in each robust subspace learning/tracking frameworks with their decomposition, their loss functions, their optimization problem and their solvers. Furthermore, we investigate if incremental algorithms and real-time implementations can be achieved for background/foreground separation. Finally, experimental results on a large-scale dataset called Background Models Challenge (BMC 2012) show the comparative performance of 32 different robust subspace learning/tracking methods.


international conference on image analysis and recognition | 2014

Incremental and Multi-feature Tensor Subspace Learning Applied for Background Modeling and Subtraction

Andrews Sobral; Christopher G. Baker; Thierry Bouwmans; El-hadi Zahzah

Background subtraction (BS) is the art of separating moving objects from their background. The Background Modeling (BM) is one of the main steps of the BS process. Several subspace learning (SL) algorithms based on matrix and tensor tools have been used to perform the BM of the scenes. However, several SL algorithms work on a batch process increasing memory consumption when data size is very large. Moreover, these algorithms are not suitable for streaming data when the full size of the data is unknown. In this work, we propose an incremental tensor subspace learning that uses only a small part of the entire data and updates the low-rank model incrementally when new data arrive. In addition, the multi-feature model allows us to build a robust low-rank background model of the scene. Experimental results shows that the proposed method achieves interesting results for background subtraction task.


asian conference on computer vision | 2014

OR-PCA with MRF for Robust Foreground Detection in Highly Dynamic Backgrounds

Sajid Javed; Seon Ho Oh; Andrews Sobral; Thierry Bouwmans; Soon Ki Jung

Accurate and efficient foreground detection is an important task in video surveillance system. The task becomes more critical when the background scene shows more variations, such as water surface, waving trees, varying illumination conditions, etc. Recently, Robust Principal Components Analysis (RPCA) shows a very nice framework for moving object detection. The background sequence is modeled by a low-dimensional subspace called low-rank matrix and sparse error constitutes the foreground objects. But RPCA presents the limitations of computational complexity and memory storage due to batch optimization methods, as a result it is difficult to apply for real-time system. To handle these challenges, this paper presents a robust foreground detection algorithm via Online Robust PCA (OR-PCA) using image decomposition along with continuous constraint such as Markov Random Field (MRF). OR-PCA with good initialization scheme using image decomposition approach improves the accuracy of foreground detection and the computation time as well. Moreover, solving MRF with graph-cuts exploits structural information using spatial neighborhood system and similarities to further improve the foreground segmentation in highly dynamic backgrounds. Experimental results on challenging datasets such as Wallflower, I2R, BMC 2012 and Change Detection 2014 dataset demonstrate that our proposed scheme significantly outperforms the state of the art approaches and works effectively on a wide range of complex background scenes.


acm symposium on applied computing | 2015

OR-PCA with dynamic feature selection for robust background subtraction

Sajid Javed; Andrews Sobral; Thierry Bouwmans; Soon Ki Jung

Background modeling and foreground object detection is the first step in visual surveillance system. The task becomes more difficult when the background scene contains significant variations, such as water surface, waving trees and sudden illumination conditions, etc. Recently, subspace learning model such as Robust Principal Component Analysis (RPCA) provides a very nice framework for separating the moving objects from the stationary scenes. However, due to its batch optimization process, high dimensional data should be processed. As a result, huge computational complexity and memory problems occur in traditional RPCA based approaches. In contrast, Online Robust PCA (OR-PCA) has the ability to process such large dimensional data via stochastic manners. OR-PCA processes one frame per time instance and updates the subspace basis accordingly when a new frame arrives. However, due to the lack of features, the sparse component of OR-PCA is not always ro-bust to handle various background modeling challenges. As a consequence, the system shows a very weak performance, which is not desirable for real applications. To handle these challenges, this paper presents a multi-feature based OR-PCA scheme. A multi-feature model is able to build a ro-bust low-rank background model of the scene. In addition, a very nice feature selection process is designed to dynamically select a useful set of features frame by frame, according to the weighted sum of total features. Experimental results on challenging datasets such as Wallflower, I2R and BMC 2012 show that the proposed scheme outperforms the state of the art approaches for the background subtraction task.


Computer Graphics and Imaging | 2013

Highway Traffic Congestion Classification using Holistic Properties

Andrews Sobral; Luciano Oliveira; Leizer Schnitman; Felippe De Souza

This work proposes a holistic method for highway traffic video classification based on vehicle crowd properties. The method classifies the traffic congestion into three classes: light, medium and heavy. This is done by usage of average crowd density and crowd speed. Firstly, the crowd density is estimated by background subtraction and the crowd speed is performed by pyramidal Kanade-Lucas-Tomasi (KLT) tracker algorithm. The features classification with neural networks show 94.50% of accuracy on experimental results from 254 highway traffic videos of UCSD data set.


international conference on computer vision | 2015

Background Subtraction via Superpixel-Based Online Matrix Decomposition with Structured Foreground Constraints

Sajid Javed; Seon Ho Oh; Andrews Sobral; Thierry Bouwmans; Soon Ki Jung

Background subtraction process plays a very essential role for various computer vision tasks. The process becomes more critical when the input scene contains variation of pixels such as swaying trees, rippling of water, illumination variations, etc. Recent methods of matrix decomposition into low-rank (e.g., corresponds to the background) and sparse (e.g., constitutes the moving objects) components such as Robust Principal Component Analysis (RPCA), have been shown to be very efficient framework for background subtraction. However, when the size of the input data grows and due to the lack of sparsity-constraints, these methods cannot cope with the real-time challenges and always show a weak performance due to the erroneous foreground regions. In order to address the above mentioned issues, this paper presents a superpixel-based matrix decomposition method together with maximum norm (max-norm) regularizations and structured sparsity constraints. The low-rank component estimated from each homogeneous region is more perfect, reliable, and efficient, since each superpixel provides different characteristics with a reduced value of rank. Online max-norm based matrix decomposition is employed on each segmented superpixel to separate the low rank and initial outliers support. And then, the structured sparsity constraints such as the generalized fussed lasso (GFL) are adopted for exploiting structural information continuously as the foreground pixels are both spatially connected and sparse. We propose an online single unified optimization framework for detecting foreground and learning the background model simultaneously. Rigorous experimental evaluations on challenging datasets demonstrate the superior performance of the proposed scheme in terms of both accuracy and computational time.


international conference on image analysis and processing | 2015

Comparison of Matrix Completion Algorithms for Background Initialization in Videos

Andrews Sobral; Thierry Bouwmans; El-hadi Zahzah

Background model initialization is commonly the first step of the background subtraction process. In practice, several challenges appear and perturb this process such as dynamic background, bootstrapping, illumination changes, noise image, etc. In this context, this work aims to investigate the background model initialization as a matrix completion problem. Thus, we consider the image sequence (or video) as a partially observed matrix. First, a simple joint motion-detection and frame-selection operation is done. The redundant frames are eliminated, and the moving regions are represented by zeros in our observation matrix. The second stage involves evaluating nine popular matrix completion algorithms with the Scene Background Initialization (SBI) data set, and analyze them with respect to the background model challenges. The experimental results show the good performance of LRGeomCG [17] method over its direct competitors.


Pattern Recognition Letters | 2017

Matrix and tensor completion algorithms for background model initialization: A comparative evaluation

Andrews Sobral; El-hadi Zahzah

Abstract Background model initialization is commonly the first step of the background subtraction process. In practice, several challenges appear and perturb this process, such as dynamic background, bootstrapping, illumination changes, noise image, etc. In this context, we investigate the background model initialization as a reconstruction problem from missing data. This problem can be formulated as a matrix or tensor completion task where the image sequence (or video) is revealed as partially observed data. In this paper, the missing entries are induced from the moving regions through a simple joint motion-detection and frame-selection operation. The redundant frames are eliminated, and the moving regions are represented by zeros in our observation model. The second stage involves evaluating twenty-three state-of-the-art algorithms comprising of thirteen matrix completion and ten tensor completion algorithms. These algorithms aim to recover the low-rank component (or background model) from partially observed data. The Scene Background Initialization data set was selected in order to evaluate this proposal with respect to the background model challenges. Our experimental results show the good performance of LRGeomCG method over its direct competitors.


international conference on computer vision | 2015

Online Stochastic Tensor Decomposition for Background Subtraction in Multispectral Video Sequences

Andrews Sobral; Sajid Javed; Soon Ki Jung; Thierry Bouwmans; El-hadi Zahzah

Background subtraction is an important task for visual surveillance systems. However, this task becomes more complex when the data size grows since the real-world scenario requires larger data to be processed in a more efficient way, and in some cases, in a continuous manner. Until now, most of background subtraction algorithms were designed for mono or trichromatic cameras within the visible spectrum or near infrared part. Recent advances in multispectral imaging technologies give the possibility to record multispectral videos for video surveillance applications. Due to the specific nature of these data, many of the bands within multispectral images are often strongly correlated. In addition, processing multispectral images with hundreds of bands can be computationally burdensome. In order to address these major difficulties of multispectral imaging for video surveillance, this paper propose an online stochastic framework for tensor decomposition of multispectral video sequences (OSTD). First, the experimental evaluations on synthetic generated data show the robustness of the OSTD with other state of the art approaches then, we apply the same idea on seven multispectral video bands to show that only RGB features are not sufficient to tackle color saturation, illumination variations and shadows problem, but the addition of six visible spectral bands together with one near infrared spectra provides a better background/foreground separation.

Collaboration


Dive into the Andrews Sobral's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

El-hadi Zahzah

University of La Rochelle

View shared research outputs
Top Co-Authors

Avatar

Sajid Javed

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Soon Ki Jung

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Seon Ho Oh

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Leizer Schnitman

Federal University of Bahia

View shared research outputs
Top Co-Authors

Avatar

Luciano Oliveira

Federal University of Bahia

View shared research outputs
Top Co-Authors

Avatar

Felippe De Souza

University of Beira Interior

View shared research outputs
Top Co-Authors

Avatar

Christopher G. Baker

Computer Sciences Corporation

View shared research outputs
Top Co-Authors

Avatar

Antoine Vacavant

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge