Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrey A. Kolokoltsov is active.

Publication


Featured researches published by Andrey A. Kolokoltsov.


PLOS Pathogens | 2010

Cellular Entry of Ebola Virus Involves Uptake by a Macropinocytosis-Like Mechanism and Subsequent Trafficking through Early and Late Endosomes

Mohammad Saeed; Andrey A. Kolokoltsov; Thomas B. Albrecht; Robert A. Davey

Zaire ebolavirus (ZEBOV), a highly pathogenic zoonotic virus, poses serious public health, ecological and potential bioterrorism threats. Currently no specific therapy or vaccine is available. Virus entry is an attractive target for therapeutic intervention. However, current knowledge of the ZEBOV entry mechanism is limited. While it is known that ZEBOV enters cells through endocytosis, which of the cellular endocytic mechanisms used remains unclear. Previous studies have produced differing outcomes, indicating potential involvement of multiple routes but many of these studies were performed using noninfectious surrogate systems such as pseudotyped retroviral particles, which may not accurately recapitulate the entry characteristics of the morphologically distinct wild type virus. Here we used replication-competent infectious ZEBOV as well as morphologically similar virus-like particles in specific infection and entry assays to demonstrate that in HEK293T and Vero cells internalization of ZEBOV is independent of clathrin, caveolae, and dynamin. Instead the uptake mechanism has features of macropinocytosis. The binding of virus to cells appears to directly stimulate fluid phase uptake as well as localized actin polymerization. Inhibition of key regulators of macropinocytosis including Pak1 and CtBP/BARS as well as treatment with the drug EIPA, which affects macropinosome formation, resulted in significant reduction in ZEBOV entry and infection. It is also shown that following internalization, the virus enters the endolysosomal pathway and is trafficked through early and late endosomes, but the exact site of membrane fusion and nucleocapsid penetration in the cytoplasm remains unclear. This study identifies the route for ZEBOV entry and identifies the key cellular factors required for the uptake of this filamentous virus. The findings greatly expand our understanding of the ZEBOV entry mechanism that can be applied to development of new therapeutics as well as provide potential insight into the trafficking and entry mechanism of other filoviruses.


Science | 2015

Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment

Yasuteru Sakurai; Andrey A. Kolokoltsov; Cheng-Chang Chen; Michael W. Tidwell; William E. Bauta; Norbert Klugbauer; Christian Grimm; Christian Wahl-Schott; Martin Biel; Robert A. Davey

Channeling Ebola virus entry into the cell The current outbreak of Ebola virus in West Africa highlights the need for antiviral therapies. One strategy would be to block the Ebola viruss ability to enter host cells. Cells engulf Ebola virus particles, which then traffic into the cell in structures called endosomes. Sakurai et al. now report that the Ebola virus requires calcium channels called two-pore channels (TPCs) in endosomal membranes for successful entry (see the Perspective by Falzarano and Feldmann). The Ebola virus could not enter cells lacking TPCs or cells treated with a TPC inhibitor. Blocking TPCs therapeutically allowed 50% of mice to survive an ordinarily lethal Ebola virus infection. Science, this issue p. 995; see also p. 947 Ebola virus requires endosomal two-pore calcium channels to enter host cells. [Also see Perspective by Falzarano and Feldmann] Ebola virus causes sporadic outbreaks of lethal hemorrhagic fever in humans, but there is no currently approved therapy. Cells take up Ebola virus by macropinocytosis, followed by trafficking through endosomal vesicles. However, few factors controlling endosomal virus movement are known. Here we find that Ebola virus entry into host cells requires the endosomal calcium channels called two-pore channels (TPCs). Disrupting TPC function by gene knockout, small interfering RNAs, or small-molecule inhibitors halted virus trafficking and prevented infection. Tetrandrine, the most potent small molecule that we tested, inhibited infection of human macrophages, the primary target of Ebola virus in vivo, and also showed therapeutic efficacy in mice. Therefore, TPC proteins play a key role in Ebola virus infection and may be effective targets for antiviral therapy.


PLOS Pathogens | 2008

Phosphoinositide-3 Kinase-Akt Pathway Controls Cellular Entry of Ebola Virus

Mohammad Saeed; Andrey A. Kolokoltsov; Alexander N. Freiberg; Robert A. Davey

The phosphoinositide-3 kinase (PI3K) pathway regulates diverse cellular activities related to cell growth, migration, survival, and vesicular trafficking. It is known that Ebola virus requires endocytosis to establish an infection. However, the cellular signals that mediate this uptake were unknown for Ebola virus as well as many other viruses. Here, the involvement of PI3K in Ebola virus entry was studied. A novel and critical role of the PI3K signaling pathway was demonstrated in cell entry of Zaire Ebola virus (ZEBOV). Inhibitors of PI3K and Akt significantly reduced infection by ZEBOV at an early step during the replication cycle. Furthermore, phosphorylation of Akt-1 was induced shortly after exposure of cells to radiation-inactivated ZEBOV, indicating that the virus actively induces the PI3K pathway and that replication was not required for this induction. Subsequent use of pseudotyped Ebola virus and/or Ebola virus-like particles, in a novel virus entry assay, provided evidence that activity of PI3K/Akt is required at the virus entry step. Class 1A PI3Ks appear to play a predominant role in regulating ZEBOV entry, and Rac1 is a key downstream effector in this regulatory cascade. Confocal imaging of fluorescently labeled ZEBOV indicated that inhibition of PI3K, Akt, or Rac1 disrupted normal uptake of virus particles into cells and resulted in aberrant accumulation of virus into a cytosolic compartment that was non-permissive for membrane fusion. We conclude that PI3K-mediated signaling plays an important role in regulating vesicular trafficking of ZEBOV necessary for cell entry. Disruption of this signaling leads to inappropriate trafficking within the cell and a block in steps leading to membrane fusion. These findings extend our current understanding of Ebola virus entry mechanism and may help in devising useful new strategies for treatment of Ebola virus infection.


PLOS ONE | 2013

A Systematic Screen of FDA-Approved Drugs for Inhibitors of Biological Threat Agents

Peter B. Madrid; Sidharth Chopra; Ian D. Manger; Lynne Gilfillan; Tiffany R. Keepers; Amy C. Shurtleff; Carol E. Green; Lalitha V. Iyer; Holli Hutcheson Dilks; Robert A. Davey; Andrey A. Kolokoltsov; Ricardo Carrion; Jean L. Patterson; Sina Bavari; Rekha G. Panchal; Travis K. Warren; Jay Wells; Walter H. Moos; RaeLyn L. Burke; Mary J. Tanga

Background The rapid development of effective medical countermeasures against potential biological threat agents is vital. Repurposing existing drugs that may have unanticipated activities as potential countermeasures is one way to meet this important goal, since currently approved drugs already have well-established safety and pharmacokinetic profiles in patients, as well as manufacturing and distribution networks. Therefore, approved drugs could rapidly be made available for a new indication in an emergency. Methodology/Principal Findings A large systematic effort to determine whether existing drugs can be used against high containment bacterial and viral pathogens is described. We assembled and screened 1012 FDA-approved drugs for off-label broad-spectrum efficacy against Bacillus anthracis; Francisella tularensis; Coxiella burnetii; and Ebola, Marburg, and Lassa fever viruses using in vitro cell culture assays. We found a variety of hits against two or more of these biological threat pathogens, which were validated in secondary assays. As expected, antibiotic compounds were highly active against bacterial agents, but we did not identify any non-antibiotic compounds with broad-spectrum antibacterial activity. Lomefloxacin and erythromycin were found to be the most potent compounds in vivo protecting mice against Bacillus anthracis challenge. While multiple virus-specific inhibitors were identified, the most noteworthy antiviral compound identified was chloroquine, which disrupted entry and replication of two or more viruses in vitro and protected mice against Ebola virus challenge in vivo. Conclusions/Significance The feasibility of repurposing existing drugs to face novel threats is demonstrated and this represents the first effort to apply this approach to high containment bacteria and viruses.


Journal of Virology | 2011

The Tyro3 Receptor Kinase Axl Enhances Macropinocytosis of Zaire Ebolavirus

Catherine L. Hunt; Andrey A. Kolokoltsov; Robert A. Davey; Wendy Maury

ABSTRACT Axl, a plasma membrane-associated Tyro3/Axl/Mer (TAM) family member, is necessary for optimal Zaire ebolavirus (ZEBOV) glycoprotein (GP)-dependent entry into some permissive cells but not others. To date, the role of Axl in virion entry is unknown. The focus of this study was to characterize entry pathways that are used for ZEBOV uptake in cells that require Axl for optimal transduction and to define the role of Axl in this process. Through the use of biochemical inhibitors, interfering RNA (RNAi), and dominant negative constructs, we demonstrate that ZEBOV-GP-dependent entry into these cells occurs through multiple uptake pathways, including both clathrin-dependent and caveola/lipid raft-mediated endocytosis. Other dynamin-dependent and -independent pathways such as macropinocytosis that mediate high-molecular-weight dextran uptake also stimulated ZEBOV-GP entry into these cells, and inhibitors that are known to block macropinocytosis inhibited both dextran uptake and ZEBOV infection. These findings provided strong evidence for the importance of this pathway in filovirus entry. Reduction of Axl expression by RNAi treatment resulted in decreased ZEBOV entry via macropinocytosis but had no effect on the clathrin-dependent or caveola/lipid raft-mediated endocytic mechanisms. Our findings demonstrate for the first time that Axl enhances macropinocytosis, thereby increasing productive ZEBOV entry.


Journal of Virology | 2007

Small Interfering RNA Profiling Reveals Key Role of Clathrin-Mediated Endocytosis and Early Endosome Formation for Infection by Respiratory Syncytial Virus

Andrey A. Kolokoltsov; Drew Deniger; Elisa H. Fleming; Norbert J. Roberts; Jon M. Karpilow; Robert A. Davey

ABSTRACT Respiratory syncytial virus (RSV) is a common cause of respiratory tract infections in infants and the elderly. Like many other pH-independent enveloped viruses, RSV is thought to enter at the cell surface, independently of common endocytic pathways. We have used a targeted small interfering RNA (siRNA) library to identify key cellular genes involved in cytoskeletal dynamics and endosome trafficking that are important for RSV infection. Surprisingly, RSV infection was potently inhibited by siRNAs targeting genes associated with clathrin-mediated endocytosis, including clathrin light chain. The important role of clathrin-mediated endocytosis was confirmed by the expression of well-characterized dominant-negative mutants of genes in this pathway and by using the clathrin endocytosis inhibitor chlorpromazine. We conclude that, while RSV may be competent to enter at the cell surface, clathrin function and endocytosis are a necessary and important part of a productive RSV infection, even though infection is strictly independent of pH. These findings raise the possibility that other pH-independent viruses may share a similar dependence on endocytosis for infection and provide a new potential avenue for treatment of infection.


Journal of Virology | 2012

Ebolavirus Requires Acid Sphingomyelinase Activity and Plasma Membrane Sphingomyelin for Infection

Mary E. Miller; Shramika Adhikary; Andrey A. Kolokoltsov; Robert A. Davey

ABSTRACT Acid sphingomyelinase (ASMase) converts the lipid sphingomyelin (SM) to phosphocholine and ceramide and has optimum activity at acidic pH. Normally, ASMase is located in lysosomes and endosomes, but membrane damage or the interaction with some bacterial and viral pathogens can trigger its recruitment to the plasma membrane. Rhinovirus and measles viruses each require ASMase activity during early stages of infection. Both sphingomyelin and ceramide are important components of lipid rafts and are potent signaling molecules. Each plays roles in mediating macropinocytosis, which has been shown to be important for ebolavirus (EBOV) infection. Here, we investigated the role of ASMase and its substrate, SM, in EBOV infection. The work was performed at biosafety level 4 with wild-type virus with specificity and mechanistic analysis performed using virus pseudotypes and virus-like particles. We found that virus particles strongly associate with the SM-rich regions of the cell membrane and depletion of SM reduces EBOV infection. ASM-specific drugs and multiple small interfering RNAs strongly inhibit the infection by EBOV and EBOV glycoprotein pseudotyped viruses but not by the pseudotypes bearing the glycoprotein of vesicular stomatitis virus. Interestingly, the binding of virus-like particles to cells is strongly associated with surface-localized ASMase as well as SM-enriched sites. Our work suggests that ASMase activity and SM presence are necessary for efficient infection of cells by EBOV. The inhibition of this pathway may provide new avenues for drug treatment.


Journal of Virology | 2005

Efficient Functional Pseudotyping of Oncoretroviral and Lentiviral Vectors by Venezuelan Equine Encephalitis Virus Envelope Proteins

Andrey A. Kolokoltsov; Scott C. Weaver; Robert A. Davey

ABSTRACT Murine oncoretroviruses and lentiviruses pseudotyped with envelope proteins of alphaviruses have shown great potential in providing broad-host-range, stable vectors for gene therapy. Unlike vesicular stomatitis virus G protein-pseudotyped vectors, they are not neutralized by complement and do not appear to cause significant tissue damage. Here we report the production of murine oncoretroviral and lentiviral vectors pseudotyped with the envelope proteins of Venezuelan equine encephalitis virus (VEEV). When optimized, these pseudotypes achieve titers of 106 CFU/ml, which is 5- to 10-fold higher than for previous vectors pseudotyped with envelope proteins from other alphaviruses. They can also be concentrated or stored frozen without significant loss of infectivity. Consistent with the tropism of the envelope donor, they transduce a broad array of human cell types, including lung epithelial cells, neuronal cells, lymphocytes, and fibroblasts. Infection is blocked by agents that inhibit endosomal acidification and by neutralizing antibodies against VEEV. These observations indicate that the pseudotypes present native epitopes on their surface and enter through a VEEV envelope-dependent, pH-sensitive mechanism. The fact that the pseudotypes are unaffected by sera reactive to other alphaviruses indicates that they may be useful when successive gene therapies are required in the presence of an active immune response. In this case, having an array of alphavirus-based vectors with similar cell tropisms would be highly advantageous. These vectors may also be useful in diagnostic assays in which infectious VEEV is undesirable but immune reactivity to native epitopes is required.


Oncogene | 2007

Constitutively active CCK2 receptor splice variant increases Src-dependent HIF-1α expression and tumor growth

Chao C; Elizabeth Goluszko; Lee Yt; Andrey A. Kolokoltsov; Robert A. Davey; Uchida T; Courtney M. Townsend; Hellmich Mr

Gastrointestinal (GI) cancers ectopically express multiple splice variants of the cholecystokinin-2 (CCK2)/gastrin receptor; however, their relative contributions to the cancer phenotype are unknown. The aim of this study was to compare the effects of CCK2 receptor (CCK2R) and CCK2i4svR expression on cell growth both in vitro and in vivo using a human epithelial cell model, HEK239. In vitro, receptor variant expression did not affect cell proliferation either in the absence or presence of agonist. However, in vivo, the expression of CCK2i4svR, but not CCK2R, increases HEK293 tumor growth in a constitutive, Src-dependent manner. Enhanced tumorigenicity of CCK2i4svR is associated with an Src-dependent increase in the transcription factor, hypoxia-inducible factor-1α, its downstream target, vascular endothelial growth factor and tumor micro-vessel density, suggesting that CCK2i4svR may contribute to the growth and spread of GI cancers through agonist-independent mechanisms that enhance tumor angiogenesis.


Archives of Virology | 2012

Inhibition of Lassa virus and Ebola virus infection in host cells treated with the kinase inhibitors genistein and tyrphostin

Andrey A. Kolokoltsov; Shramika Adhikary; Jennifer Garver; Lela Johnson; Robert A. Davey; Eric M. Vela

Arenaviruses and filoviruses are capable of causing hemorrhagic fever syndrome in humans. Limited therapeutic and/or prophylactic options are available for humans suffering from viral hemorrhagic fever. In this report, we demonstrate that pre-treatment of host cells with the kinase inhibitors genistein and tyrphostin AG1478 leads to inhibition of infection or transduction in cells infected with Ebola virus, Marburg virus, and Lassa virus. In all, the results demonstrate that a kinase inhibitor cocktail consisting of genistein and tyrphostin AG1478 is a broad-spectrum antiviral that may be used as a therapeutic or prophylactic against arenavirus and filovirus hemorrhagic fever.

Collaboration


Dive into the Andrey A. Kolokoltsov's collaboration.

Top Co-Authors

Avatar

Robert A. Davey

Texas Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Mohammad Saeed

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Elisa H. Fleming

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Andrew C. Moore

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Celia Chao

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Courtney M. Townsend

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Kirk L. Ives

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Mark R. Hellmich

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Norbert J. Roberts

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Scott C. Weaver

University of Texas Medical Branch

View shared research outputs
Researchain Logo
Decentralizing Knowledge