Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrey L. Rogach is active.

Publication


Featured researches published by Andrey L. Rogach.


Advanced Materials | 2010

Properties and Applications of Colloidal Nonspherical Noble Metal Nanoparticles

Tapan K. Sau; Andrey L. Rogach; Frank Jäckel; Thomas A. Klar; Jochen Feldmann

Nanoparticles of noble metals belong to the most extensively studied colloidal systems in the field of nanoscience and nanotechnology. Due to continuing progress in the synthesis of nanoparticles with controlled morphologies, the exploration of unique morphology-dependent properties has gained momentum. Anisotropic features in nonspherical nanoparticles make them ideal candidates for enhanced chemical, catalytic, and local field related applications. Nonspherical plasmon resonant nanoparticles offer favorable properties for their use as analytical tools, or as diagnostic and therapeutic agents. This Review highlights morphology-dependent properties of nonspherical noble metal nanoparticles with a focus on localized surface plasmon resonance and local field enhancement, as well as their applications in various fields including Raman spectroscopy, fluorescence enhancement, analytics and sensing, photothermal therapy, (bio-)diagnostics, and imaging.


Advanced Materials | 2010

Nonspherical Noble Metal Nanoparticles: Colloid-Chemical Synthesis and Morphology Control

Tapan K. Sau; Andrey L. Rogach

Metal nanoparticles have been the subject of widespread research over the past two decades. In recent years, noble metals have been the focus of numerous studies involving synthesis, characterization, and applications. Synthesis of an impressive range of noble metal nanoparticles with varied morphologies has been reported. Researchers have made a great progress in learning how to engineer materials on a nanometer length scale that has led to the understanding of the fundamental size- and shape-dependent properties of matter and to devising of new applications. In this article, we review the recent progress in the colloid-chemical synthesis of nonspherical nanoparticles of a few important noble metals (mainly Ag, Au, Pd, and Pt), highlighting the factors that influence the particle morphology and discussing the mechanisms behind the nonspherical shape evolution. The article attempts to present a thorough discussion of the basic principles as well as state-of-the-art morphology control in noble metal nanoparticles.


ACS Nano | 2015

Prospects of Nanoscience with Nanocrystals

Maksym V. Kovalenko; Liberato Manna; Andreu Cabot; Zeger Hens; Dmitri V. Talapin; Cherie R. Kagan; Victor I. Klimov; Andrey L. Rogach; Peter Reiss; Delia J. Milliron; Philippe Guyot-Sionnnest; Gerasimos Konstantatos; Wolfgang J. Parak; Taeghwan Hyeon; Brian A. Korgel; Christopher B. Murray; W. Heiss

Colloidal nanocrystals (NCs, i.e., crystalline nanoparticles) have become an important class of materials with great potential for applications ranging from medicine to electronic and optoelectronic devices. Todays strong research focus on NCs has been prompted by the tremendous progress in their synthesis. Impressively narrow size distributions of just a few percent, rational shape-engineering, compositional modulation, electronic doping, and tailored surface chemistries are now feasible for a broad range of inorganic compounds. The performance of inorganic NC-based photovoltaic and light-emitting devices has become competitive to other state-of-the-art materials. Semiconductor NCs hold unique promise for near- and mid-infrared technologies, where very few semiconductor materials are available. On a purely fundamental side, new insights into NC growth, chemical transformations, and self-organization can be gained from rapidly progressing in situ characterization and direct imaging techniques. New phenomena are constantly being discovered in the photophysics of NCs and in the electronic properties of NC solids. In this Nano Focus, we review the state of the art in research on colloidal NCs focusing on the most recent works published in the last 2 years.


Advanced Functional Materials | 2002

Organization of Matter on Different Size Scales: Monodisperse Nanocrystals and Their Superstructures

Andrey L. Rogach; Dmitri V. Talapin; Elena V. Shevchenko; Andreas Kornowski; Markus Haase; Horst Weller

Advanced colloidal syntheses enable the preparation of monodisperse semiconductors and magnetic alloy nanocrystals. They can be further used as building blocks for the fabrication of ordered assemblies: two-dimensional and three-dimensional arrays and colloidal supercrystals. This article reviews our recent activities in these fields. A theoretical description of the evolution of an ensemble of nanoparticles in a colloidal solution is applied to the problem of control over the nanocrystal monodispersity.


Nature Materials | 2014

Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods

Thomas Simon; Nicolas Bouchonville; Maximilian J. Berr; Aleksandar Vaneski; Asmir Adrović; David Volbers; Regina Wyrwich; Markus Döblinger; Andrei S. Susha; Andrey L. Rogach; Frank Jäckel; Jacek K. Stolarczyk; Jochen Feldmann

Photocatalytic conversion of solar energy to fuels, such as hydrogen, is attracting enormous interest, driven by the promise of addressing both energy supply and storage. Colloidal semiconductor nanocrystals have been at the forefront of these efforts owing to their favourable and tunable optical and electronic properties as well as advances in their synthesis. The efficiency of the photocatalysts is often limited by the slow transfer and subsequent reactions of the photoexcited holes and the ensuing high charge recombination rates. Here we propose that employing a hydroxyl anion/radical redox couple to efficiently relay the hole from the semiconductor to the scavenger leads to a marked increase in the H2 generation rate without using expensive noble metal co-catalysts. The apparent quantum yield and the formation rate under 447 nm laser illumination exceeded 53% and 63 mmol g(-1) h(-1), respectively. The fast hole transfer confers long-term photostability on the system and opens new pathways to improve the oxidation side of full water splitting.


Nano Letters | 2016

Enhancing the Brightness of Cesium Lead Halide Perovskite Nanocrystal Based Green Light-Emitting Devices through the Interface Engineering with Perfluorinated Ionomer

Xiaoyu Zhang; Hong Lin; He Huang; Claas J. Reckmeier; Yu Zhang; Wallace C. H. Choy; Andrey L. Rogach

High photoluminescence quantum yield, easily tuned emission colors, and high color purity of perovskite nanocrystals make this class of material attractive for light source or display applications. Here, green light-emitting devices (LEDs) were fabricated using inorganic cesium lead halide perovskite nanocrystals as emitters. By introducing a thin film of perfluorinated ionomer (PFI) sandwiched between the hole transporting layer and perovskite emissive layer, the device hole injection efficiency has been significantly enhanced. At the same time, PFI layer suppressed charging of the perovskite nanocrystal emitters thus preserving their superior emissive properties, which led to the three-fold increase in peak brightness reaching 1377 cd m(-2). The full width at half-maximum of the symmetric emission peak with color coordinates of (0.09, 0.76) was 18 nm, the narrowest value among perovskite based green LEDs.


ACS Nano | 2013

Color-Switchable Electroluminescence of Carbon Dot Light-Emitting Diodes

Xiaoyu Zhang; Yu Zhang; Yu Wang; Sergii Kalytchuk; Stephen V. Kershaw; Ying-Hui Wang; Peng Wang; Tieqiang Zhang; Yi Zhao; Hanzhuang Zhang; Tian Cui; Yiding Wang; Jun Zhao; William W. Yu; Andrey L. Rogach

Carbon-dot based light-emitting diodes (LEDs) with driving current controlled color change are reported. These devices consist of a carbon-dot emissive layer sandwiched between an organic hole transport layer and an organic or inorganic electron transport layer fabricated by a solution-based process. By tuning the device structure and the injecting current density (by changing the applied voltage), we can obtain multicolor emission of blue, cyan, magenta, and white from the same carbon dots. Such a switchable EL behavior with white emission has not been observed thus far in single emitting layer structured nanomaterial LEDs. This interesting current density-dependent emission is useful for the development of colorful LEDs. The pure blue and white emissions are obtained by tuning the electron transport layer materials and the thickness of electrode.


Angewandte Chemie | 2008

Light‐Emitting Diodes with Semiconductor Nanocrystals

Andrey L. Rogach; Nikolai Gaponik; John M. Lupton; Cristina Bertoni; Diego E. Gallardo; Steve Dunn; Nello Li Pira; Marzia Paderi; Piermario Repetto; Sergei G. Romanov; Colm O'Dwyer; Clivia M. Sotomayor Torres; Alexander Eychmüller

Colloidal semiconductor nanocrystals are promising luminophores for creating a new generation of electroluminescence devices. Research on semiconductor nanocrystal based light-emitting diodes (LEDs) has made remarkable advances in just one decade: the external quantum efficiency has improved by over two orders of magnitude and highly saturated color emission is now the norm. Although the device efficiencies are still more than an order of magnitude lower than those of the purely organic LEDs there are potential advantages associated with nanocrystal-based devices, such as a spectrally pure emission color, which will certainly merit future research. Further developments of nanocrystal-based LEDs will be improving material stability, understanding and controlling chemical and physical phenomena at the interfaces, and optimizing charge injection and charge transport.


Journal of Applied Physics | 2000

Electroluminescence of different colors from polycation/CdTe nanocrystal self-assembled films

Mingyuan Gao; Constanze Lesser; Stefan Kirstein; Helmuth Möhwald; Andrey L. Rogach; Horst Weller

Water soluble thiol capped CdTe nanocrystals are assembled into ultrathin films in combination with poly(diallyldimethylammonium chloride) (PDDA) by the self-assembly method of layer-by-layer adsorption of oppositely charged polyelectrolytes. Electroluminescent devices, which produce different color emissions, are fabricated by sandwiching CdTe/PDDA films between indium–tin–oxide (ITO) and aluminum electrodes using CdTe nanocrystals of different sizes. It is shown that the electroluminescence (EL) spectra of the CdTe/polymer films are nearly identical to the photoluminescence spectra of the corresponding CdTe nanocrystals in aqueous solutions. The devices produce room-light visible light output with an external quantum efficiency up to 0.1%. Light emission is observed at current densities of 10 mA/cm2 and at low onset voltages of 2.5–3.5 V, which depends on the thickness of the film indicating field-dependent current injection. A variation of the EL efficiency with the size of the CdTe particles is observ...


Pure and Applied Chemistry | 2000

Chemistry and photophysics of thiol-stabilized II-VI semiconductor nanocrystals

Alexander Eychmüller; Andrey L. Rogach

The chemical and physical properties of thiol-stabilized semiconductor nanocrystals are reviewed. The materials prepared include cadmium and mercury chalcogenides with sizes ranging between 1.4 and about 8 nm. In this size regime, the optical properties of the particles are governed by the size-quantization effect. All nanocrystals synthesized belong to the cubic crystal structure. Some applications of this class of materials are outlined.

Collaboration


Dive into the Andrey L. Rogach's collaboration.

Top Co-Authors

Avatar

Andrei S. Susha

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Stephen V. Kershaw

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Nikolai Gaponik

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Eychmüller

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Julian Schneider

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sergii Kalytchuk

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Hongkang Wang

Xi'an Jiaotong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge