Andrey Lavrov
Moscow State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrey Lavrov.
Russian Journal of Developmental Biology | 2014
Andrey Lavrov; I.A. Kosevich
Sponges (Porifera) are lower metazoans whose organization is characterized by a high plasticity of anatomical and cellular structures. One of the manifestations of this plasticity is the ability of sponge cells to reaggregate after dissociation of tissues. This review brings together the available data on the reaggregation of sponge cells that have been obtained to date since the beginning of the 20th century. It considers the behavior of dissociated cells in suspension, the mechanisms and factors involved in reaggregation, and the rate and stages of this process in different representatives of this phylum. In addition, this review provides information about the histological structure of multicellular aggregates formed during reaggregation of cells and the regenerative morphogenetic processes leading to the formation of normal sponges from these multicellular aggregates.
Journal of Experimental Zoology | 2016
Andrey Lavrov; I.A. Kosevich
Sponges (phylum Porifera) are one of the most ancient extant multicellular animals and can provide valuable insights into origin and early evolution of Metazoa. High plasticity of cell differentiations and anatomical structure is characteristic feature of sponges. Present study deals with sponge cell reaggregation after dissociation as the most outstanding case of sponge plasticity. Dynamic of cell reaggregation and structure of multicellular aggregates of three demosponge species (Halichondria panicea (Pallas, 1766), Haliclona aquaeductus (Sсhmidt, 1862), and Halisarca dujardinii Johnston, 1842) were studied. Sponge tissue dissociation was performed mechanically. Resulting cell suspensions were cultured at 8-10°C for at least 5 days. Structure of multicellular aggregates was studied by light, transmission and scanning electron microscopy. Studied species share common stages of cell reaggregation-primary multicellular aggregates, early-stage primmorphs and primmorphs, but the rate of reaggregation varies considerably among species. Only cells of H. dujardinii are able to reconstruct functional and viable sponge after primmorphs formation. Sponge reconstruction in this species occurs due to active cell locomotion. Development of H. aquaeductus and H. panicea cells ceases at the stages of early primmorphs and primmorphs, respectively. Development of aggregates of these species is most likely arrested due to immobility of the majority of cells inside them. However, the inability of certain sponge species to reconstruct functional and viable individuals during cell reaggregation may be not a permanent species-specific characteristic, but depends on various factors, including the stage of the life cycle and experimental conditions.
Biochimica et Biophysica Acta | 2016
Yulia V. Lyupina; Olga G. Zatsepina; Marina V. Serebryakova; Pavel A. Erokhov; Svetlana B. Abaturova; Oksana Kravchuk; Olga V. Orlova; Svetlana N. Beljelarskaya; Andrey Lavrov; Olga S. Sokolova; Victor S. Mikhailov
Baculoviruses are large DNA viruses that infect insect species such as Lepidoptera and are used in biotechnology for protein production and in agriculture as insecticides against crop pests. Baculoviruses require activity of host proteasomes for efficient reproduction, but how they control the cellular proteome and interact with the ubiquitin proteasome system (UPS) of infected cells remains unknown. In this report, we analyzed possible changes in the subunit composition of 26S proteasomes of the fall armyworm, Spodoptera frugiperda (Sf9), cells in the course of infection with the Autographa californica multiple nucleopolyhedrovirus (AcMNPV). 26S proteasomes were purified from Sf9 cells by an immune affinity method and subjected to 2D gel electrophoresis followed by MALDI-TOF mass spectrometry and Mascot search in bioinformatics databases. A total of 34 homologues of 26S proteasome subunits of eukaryotic species were identified including 14 subunits of the 20S core particle (7 α and 7 β subunits) and 20 subunits of the 19S regulatory particle (RP). The RP contained homologues of 11 of RPN-type and 6 of RPT-type subunits, 2 deubiquitinating enzymes (UCH-14/UBP6 and UCH-L5/UCH37), and thioredoxin. Similar 2D-gel maps of 26S proteasomes purified from uninfected and AcMNPV-infected cells at 48hpi confirmed the structural integrity of the 26S proteasome in insect cells during baculovirus infection. However, subtle changes in minor forms of some proteasome subunits were detected. A portion of the α5(zeta) cellular pool that presumably was not associated with the proteasome underwent partial proteolysis at a late stage in infection.
The Biological Bulletin | 2018
Andrey Lavrov; I.A. Kosevich
Sponges (phylum Porifera) traditionally are represented as inactive, sessile filter-feeding animals devoid of any behavior except filtering activity. However, different time-lapse techniques demonstrate that sponges are able to show a wide range of coordinated but slow whole-organism behavior. The present study concerns a peculiar type of such behavior in the psychrophilic demosponge Amphilectus lobatus: stolonial movement. During stolonial movement, sponges produce outgrowths (stolons) that crawl along a substrate with a speed of 4.4 ± 2.2 μm min−1 and branch, thus forming a complex net covering a considerable area of a substrate. This net is used by sponges to search for new points with appropriate environmental conditions for individual relocation. After such points are found, all cells of the parental sponge migrate through stolons, leaving a naked parental skeleton, forming one or several filial sponges in the new location. Thus, stolonial movement combines traits of crawling along the substrate and asexual reproduction. This behavior relies on massive cell dedifferentiation followed by coordinated cell migration to the point of new sponge body formation and their subsequent differentiation into specialized cell types.
Doklady Biochemistry and Biophysics | 2018
Oksana Kravchuk; Andrey Lavrov; A. D. Finoshin; N. G. Gornostaev; A. A. Georgiev; Svetlana B. Abaturova; Victor S. Mikhailov; Yu. V. Lyupina
It was found that cells of different color morphs of the cold-water marine sponges Halichondria panicea (Pallas, 1766) of the class Demospongiae differ in the content of epibionts of bacteria of the genus Pseudoalteromonas. The sponge cells with elevated levels of epibionts of bacteria of the genus Pseudoalteromonas showed an increased expression of Hsp70 proteins but had a reduced level of the proteasomal catalytic beta 5 subunit, which was accompanied by a change in their activity. Probably, epibionts of bacteria of the genus Pseudoalteromonas may affect the ubiquitin–proteasome system in the cells of cold-water marine sponges and, thereby, ensure their adaptive plasticity.
Invertebrate Zoology | 2017
Alexander V. Ereskovsky; Andrey Lavrov; Fyodor V. Bolshakov; D. B. Tokina
F1000Research | 2018
Alexander V. Ereskovsky; Feodor Bolshakov; Daria B. Tokina; Andrey Lavrov
Изучение, рациональное использование и охрана природных ресурсов Белого моря | 2017
Andrey Lavrov; I.A. Kosevich
F1000Research | 2017
Andrey Lavrov; I.A. Kosevich
F1000Research | 2017
Alexander Ereskovsky; Andrey Lavrov; Fyodor V. Bolshakov