Andrey Martynov
Université du Québec à Montréal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrey Martynov.
Climate Dynamics | 2013
Leticia Hernández-Díaz; René Laprise; Laxmi Sushama; Andrey Martynov; Katja Winger; Bernard Dugas
The new fifth-generation Regional Climate Model (CRCM5) was driven by ERA reanalyses for the period 1984–2008 over the African continent following the CORDEX experimental protocol. Overall the model succeeds in reproducing the main features of the geographical distribution and seasonal cycle of temperature and precipitation, the diurnal cycle of precipitation, and the West African Monsoon (WAM). Biases in surface temperature and precipitation are discussed in relation with some circulation defects noted in the simulation. In the African regions near the equator, the model successfully reproduces the double peak of rainfall due to the double passage of the tropical rainbelt, although it better simulates the magnitude and timing of the second peak of precipitation. CRCM5 captures the timing of the monsoon onset for the Sahel region but underestimates the magnitude of precipitation. The simulated diurnal cycle is quite well simulated for all of the regions, but is always somewhat in advance for the timing of rainfall peak. In boreal summer the CRCM5 simulation exhibits a weak cold bias over the Sahara and the maximum temperature is located too far south, resulting in a southward bias in the position of the Saharan Heat Low. The region of maximum ascent in the deep meridional circulation of the Hadley cell is well located in the CRCM5 simulation, but it is somewhat too narrow. The core of the African Easterly Jet is of the right strength and almost at the right height, but it is displayed slightly southward, as a consequence of the southward bias in the position of the Saharan Heat Low and the thermal wind relationship. These biases appear to be germane to the WAM rainfall band being narrower and not moving far enough northward, resulting in a dry bias in the Sahel.
Climate Dynamics | 2013
Leo Separovic; Adelina Alexandru; René Laprise; Andrey Martynov; Laxmi Sushama; Katja Winger; Kossivi Tete; Michel Valin
The fifth-generation Canadian Regional Climate Model (CRCM5) was used to dynamically downscale two Coupled Global Climate Model (CGCM) simulations of the transient climate change for the period 1950–2100, over North America, following the CORDEX protocol. The CRCM5 was driven by data from the CanESM2 and MPI-ESM-LR CGCM simulations, based on the historical (1850–2005) and future (2006–2100) RCP4.5 radiative forcing scenario. The results show that the CRCM5 simulations reproduce relatively well the current-climate North American regional climatic features, such as the temperature and precipitation multiannual means, annual cycles and temporal variability at daily scale. A cold bias was noted during the winter season over western and southern portions of the continent. CRCM5-simulated precipitation accumulations at daily temporal scale are much more realistic when compared with its driving CGCM simulations, especially in summer when small-scale driven convective precipitation has a large contribution over land. The CRCM5 climate projections imply a general warming over the continent in the 21st century, especially over the northern regions in winter. The winter warming is mostly contributed by the lower percentiles of daily temperatures, implying a reduction in the frequency and intensity of cold waves. A precipitation decrease is projected over Central America and an increase over the rest of the continent. For the average precipitation change in summer however there is little consensus between the simulations. Some of these differences can be attributed to the uncertainties in CGCM-projected changes in the position and strength of the Pacific Ocean subtropical high pressure.
Tellus A | 2012
Andrey Martynov; Laxmi Sushama; René Laprise; Katja Winger; Bernard Dugas
ABSTRACT Two one-dimensional (1-D) column lake models have been coupled interactively with a developmental version of the Canadian Regional Climate Model. Multidecadal reanalyses-driven simulations with and without lakes revealed the systematic biases of the model and the impact of lakes on the simulated North American climate. The presence of lakes strongly influences the climate of the lake-rich region of the Canadian Shield. Due to their large thermal inertia, lakes act to dampen the diurnal and seasonal cycle of low-level air temperature. In late autumn and winter, ice-free lakes induce large sensible and latent heat fluxes, resulting in a strong enhancement of precipitation downstream of the Laurentian Great Lakes, which is referred to as the snow belt. The FLake (FL) and Hostetler (HL) lake models perform adequately for small subgrid-scale lakes and for large resolved lakes with shallow depth, located in temperate or warm climatic regions. Both lake models exhibit specific strengths and weaknesses. For example, HL simulates too rapid spring warming and too warm surface temperature, especially in large and deep lakes; FL tends to damp the diurnal cycle of surface temperature. An adaptation of 1-D lake models might be required for an adequate simulation of large and deep lakes.
Tellus A | 2014
Wim Thiery; Victor Stepanenko; Xing Fang; Klaus Jöhnk; Zhongshun Li; Andrey Martynov; Marjorie Perroud; Zachary M. Subin; François Darchambeau; Dmitrii Mironov; Nicole P. M. van Lipzig
The African great lakes are of utmost importance for the local economy (fishing), as well as being essential to the survival of the local people. During the past decades, these lakes experienced fast changes in ecosystem structure and functioning, and their future evolution is a major concern. In this study, for the first time a set of one-dimensional lake models are evaluated for Lake Kivu (2.28°S; 28.98°E), East Africa. The unique limnology of this meromictic lake, with the importance of salinity and subsurface springs in a tropical high-altitude climate, presents a worthy challenge to the seven models involved in the Lake Model Intercomparison Project (LakeMIP). Meteorological observations from two automatic weather stations are used to drive the models, whereas a unique dataset, containing over 150 temperature profiles recorded since 2002, is used to assess the models performance. Simulations are performed over the freshwater layer only (60 m) and over the average lake depth (240 m), since salinity increases with depth below 60 m in Lake Kivu and some lake models do not account for the influence of salinity upon lake stratification. All models are able to reproduce the mixing seasonality in Lake Kivu, as well as the magnitude and seasonal cycle of the lake enthalpy change. Differences between the models can be ascribed to variations in the treatment of the radiative forcing and the computation of the turbulent heat fluxes. Fluctuations in wind velocity and solar radiation explain inter-annual variability of observed water column temperatures. The good agreement between the deep simulations and the observed meromictic stratification also shows that a subset of models is able to account for the salinity- and geothermal-induced effects upon deep-water stratification. Finally, based on the strengths and weaknesses discerned in this study, an informed choice of a one-dimensional lake model for a given research purpose becomes possible.
Tellus A | 2012
H. Kheyrollah Pour; Claude R. Duguay; Andrey Martynov; Laura C. Brown
ABSTRACT Lake surface temperature (LST) and ice phenology were simulated for various points differing in depth on Great Slave Lake and Great Bear Lake, two large lakes located in the Mackenzie River Basin in Canadas Northwest Territories, using the 1-D Freshwater Lake model (FLake) and the Canadian Lake Ice Model (CLIMo) over the 2002–2010 period, forced with data from three weather stations (Yellowknife, Hay River and Deline). LST model results were compared to those derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Earth Observing System Terra and Aqua satellite platforms. Simulated ice thickness and freeze-up/break-up dates were also compared to in situ observations. Both models showed a good agreement with daily average MODIS LSTs on an annual basis (0.935 ≤ relative index of agreement ≤ 0.984 and 0.94 ≤ mean bias error ≤ 4.83). The absence of consideration of snow on lake ice in FLake was found to have a large impact on estimated ice thicknesses (25 cm thicker on average by the end of winter compared to in situ measurements; 9 cm thicker for CLIMo) and break-up dates (6 d earlier in comparison with in situ measurements; 3 d later for CLIMo). The overall agreement between the two models and MODIS LST products during both the open water and ice seasons was good. Remotely sensed data are a promising data source for assimilation into numerical weather prediction models, as they provide the spatial coverage that is not captured by in situ data.
Journal of Geophysical Research | 2014
G. T. Diro; Laxmi Sushama; Andrey Martynov; Dae Il Jeong; Diana Verseghy; Katja Winger
Land-atmosphere coupling and its impact on extreme precipitation and temperature events over North America are studied using the fifth generation of the Canadian Regional Climate Model (CRCM5). To this effect, two 30 year long simulations, spanning the 1981–2010 period, with and without land-atmosphere coupling, have been performed with CRCM5, driven by the European Centre for Medium-Range Weather Forecasts reanalysis at the boundaries. In the coupled simulation, the soil moisture interacts freely with the atmosphere at each time step, while in the uncoupled simulation, soil moisture is replaced with its climatological value computed from the coupled simulation, thus suppressing the soil moisture-atmosphere interactions. Analyses of the coupled and uncoupled simulations, for the summer period, show strong soil moisture-temperature coupling over the Great Plains, consistent with previous studies. The maxima of soil moisture-precipitation coupling is more spread out and covers the semiarid regions of the western U.S. and parts of the Great Plains. However, the strength of soil moisture-precipitation coupling is found to be generally weaker than that of soil moisture-temperature coupling. The study clearly indicates that land-atmosphere coupling increases the interannual variability of the seasonal mean daily maximum temperature in the Great Plains. Land-atmosphere coupling is found to significantly modulate selected temperature extremes such as the number of hot days, frequency, and maximum duration of hot spells over the Great Plains. Results also suggest additional hot spots, where soil moisture modulates extreme events. These hot spots are located in the southeast U.S. for the hot days/hot spells and in the semiarid regions of the western U.S. for extreme wet spells. This study thus demonstrates that climatologically wet/dry regions can become hot spots of land-atmosphere coupling when the soil moisture decreases/increases to an intermediate transitional level where evapotranspiration becomes moisture sensitive and large enough to affect the climate.
Climate Dynamics | 2013
Andrey Martynov; René Laprise; Laxmi Sushama; Katja Winger; Leo Separovic; Bernard Dugas
Boreal Environment Research | 2010
Andrey Martynov; Laxmi Sushama; René Laprise
Geoscientific Model Development | 2013
Wim Thiery; Andrey Martynov; François Darchambeau; Jean-Pierre Descy; Pierre-Denis Plisnier; Laxmi Sushama; N. P. M. van Lipzig
Boreal Environment Research | 2010
Victor Stepanenko; Stéphane Goyette; Andrey Martynov; Marjorie Perroud; Xing Fang; Dmitrii Mironov