Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrey S. Klymchenko is active.

Publication


Featured researches published by Andrey S. Klymchenko.


Biophysical Journal | 2009

Monitoring Biophysical Properties of Lipid Membranes by Environment-Sensitive Fluorescent Probes

Alexander P. Demchenko; Yves Mély; Guy Duportail; Andrey S. Klymchenko

We review the main trends in the development of fluorescence probes to obtain information about the structure, dynamics, and interactions in biomembranes. These probes are efficient for studying the microscopic analogs of viscosity, polarity, and hydration, as well as the molecular order, environment relaxation, and electrostatic potentials at the sites of their location. Progress is being made in increasing the information content and spatial resolution of the probe responses. Multichannel environment-sensitive probes that can distinguish between different membrane physicochemical properties through multiple spectroscopic parameters show considerable promise.


Physical Chemistry Chemical Physics | 2003

Multiparametric probing of intermolecular interactions with fluorescent dye exhibiting excited state intramolecular proton transfer

Andrey S. Klymchenko; Alexander P. Demchenko

Excited-state intramolecular proton transfer (ESIPT) in 3-hydroxyflavone dyes allows us to record, in addition to common spectroscopic parameters, the positions of absorption (νabs) and emission (νN*) maxima, two new parameters: the position of the emission maximum of the ESIPT product T* state (νT*) and the intensity ratio of the two emission bands (IN*/IT*). An attempt was made to find a correlation between these parameters and physicochemical characteristics of microenvironment: polarity f(e), electronic polarizability f(n) and H-bond donor ability. A detailed spectroscopic study of 4′-diethylamino-3-hydroxyflavone in a set of 21 representative solvents demonstrates that the Stokes shift of the N* band (νabs − νN*) correlates strongly with the Lippert function L = f(e) − f(n), and this correlation does not depend on the effects of intermolecular H-bonding, while the correlation of log(IN*/IT*) with polarity f(e) can be represented by linear functions that are different for protic and aprotic environments. Cross-correlation analysis of the spectroscopic parameters provides criteria to distinguish specific (H-bonding and other) from universal probe interactions with the environment. We suggest an algorithm, which uses four spectroscopic parameters νabs, νN*, νT* and log(IN*/IT*) to provide a simultaneous estimation of three microenvironment characteristics: f(e), f(n) and H-bond donor ability. An application of this algorithm in the studies of binary solvent mixtures, reverse micelles and binding sites of proteins demonstrates the power of this approach and suggests a unique possibility to develop a new generation of fluorescence probes and labels in the 3-hydroxyflavone family for studying complex microheterogeneous systems in physical chemistry, colloid chemistry and the biological sciences.


Journal of the American Chemical Society | 2010

Switchable Nile Red-Based Probe for Cholesterol and Lipid Order at the Outer Leaflet of Biomembranes

Oleksandr A. Kucherak; Sule Oncul; Zeinab Darwich; Dmytro A. Yushchenko; Youri Arntz; Pascal Didier; Yves Mély; Andrey S. Klymchenko

Cholesterol and sphingomyelin form together a highly ordered membrane phase, which is believed to play important biological functions in plasma membranes of mammalian cells. Since sphingomyelin is present mainly at the outer leaflet of cell membranes, monitoring its lipid order requires molecular probes capable to bind specifically at this leaflet and exhibit negligibly slow flip-flop. In the present work, such a probe was developed by modifying the solvatochromic fluorescent dye Nile Red with an amphiphilic anchor group. To evaluate the flip-flop of the obtained probe (NR12S), we developed a methodology of reversible redox switching of its fluorescence at one leaflet using sodium dithionite. This method shows that NR12S, in contrast to parent Nile Red, binds exclusively the outer membrane leaflet of model lipid vesicles and living cells with negligible flip-flop in the time scale of hours. Moreover, the emission maximum of NR12S in model vesicles exhibits a significant blue shift in liquid ordered phase (sphingomyelin-cholesterol) as compared to liquid disordered phase (unsaturated phospholipids). As a consequence, these two phases could be clearly distinguished in NR12S-stained giant vesicles by fluorescence microscopy imaging of intensity ratio between the blue and red parts of the probe emission spectrum. Being added to living cells, NR12S binds predominantly, if not exclusively, their plasma membranes and shows an emission spectrum intermediate between those in liquid ordered and disordered phases of model membranes. Importantly, the emission color of NR12S correlates well with the cholesterol content in cell membranes, which allows monitoring the cholesterol depletion process with methyl-beta-cyclodextrin by fluorescence spectroscopy and microscopy. The attractive photophysical and switching properties of NR12S, together with its selective outer leaflet staining and sensitivity to cholesterol and lipid order, make it a new powerful tool for studying model and cell membranes.


Chemistry & Biology | 2014

Fluorescent Probes for Lipid Rafts: From Model Membranes to Living Cells

Andrey S. Klymchenko; Rémy Kreder

Membrane microdomains (rafts) remain one of the controversial issues in biophysics. Fluorescent molecular probes, which make these lipid nanostructures visible through optical techniques, are one of the tools currently used to study lipid rafts. The most common are lipophilic fluorescent probes that partition specifically into liquid ordered or liquid disordered phase. Their partition depends on the lipid composition of a given phase, which complicates their use in cellular membranes. A second class of probes is based on environment-sensitive dyes, which partition into both phases, but stain them by different fluorescence color, intensity, or lifetime. These probes can directly address the properties of each separate phase, but their cellular applications are still limited. The present review focuses on summarizing the current state in the field of developing and applying fluorescent molecular probes to study lipid rafts. We highlight an urgent need to develop new probes, specifically adapted for cell plasma membranes and compatible with modern fluorescence microscopy techniques to push the understanding of membrane microdomains forward.


Chemistry & Biology | 2002

Novel Two-Band Ratiometric Fluorescence Probes with Different Location and Orientation in Phospholipid Membranes

Andrey S. Klymchenko; Guy Duportail; Turan Ozturk; Vasyl G. Pivovarenko; Yves Mély; Alexander P. Demchenko

3-hydroxyflavone (3-HF) derivatives are very attractive fluorescence sensors due to their ability to respond to small changes in their microenvironment via a dramatic alteration of the relative intensities of their two well-separated emission bands. We developed fluorescence probes with locations at different depths and orientations of 3-HF moiety in the phospholipid bilayer, which determine their fluorescence behavior. While the spectral shifts of the probes correlate with their binding site polarity, the intensity ratio is a complex parameter that is also sensitive to the local hydration. We demonstrate that even the deeply located probes sense this hydration effect, which can be modulated by the charge of the lipid heads and is anisotropic with respect to the bilayer plane. Thus the two-band ratiometric fluorescence probes can provide multiparametric information on the properties of lipid membranes at different depths.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Ultrasensitive two-color fluorescence probes for dipole potential in phospholipid membranes

Andrey S. Klymchenko; Guy Duportail; Yves Mély; Alexander P. Demchenko

The principle of electrochromic modulation of excited-state intramolecular proton-transfer reaction was applied for the design of fluorescence probes with high two-color sensitivity to dipole potential, Ψd, in phospholipid bilayers. We report on the effect of Ψd variation on excitation and fluorescence spectra of two new 3-hydroxyflavone probes, which possess opposite orientations of the fluorescent moiety in the lipid bilayer. The dipole potential in the bilayer was modulated by the addition of 6-ketocholestanol or phloretin and by substitution of dimyristoyl phosphatidylcholine lipid with its ether analog 1,2-di-o-tetradecyl-sn-glycero-3-phosphocholine, and its value was estimated by the reference styryl dye 1-(3-sulfonatopropyl)-4-{β[2-(di-n-octylamino)-6-naphthyl]vinyl}pyridinium betaine. We demonstrate that after Ψd changes, the probe orienting in the bilayer similarly to the reference dye shows similar shifts in the excitation spectra, whereas the probe with the opposite orientation shows the opposite shifts. The new observation is that the response of 3-hydroxyflavone probes to Ψd in excitation spectra is accompanied by and quantitatively correlated with dramatic changes of relative intensities of the two well separated emission bands that belong to the initial normal and the product tautomer forms of the excited-state intramolecular proton-transfer reaction. This provides a strong response to Ψd by change in emission color.


Small | 2016

Fluorescent Polymer Nanoparticles Based on Dyes: Seeking Brighter Tools for Bioimaging

Andreas Reisch; Andrey S. Klymchenko

Speed, resolution and sensitivity of todays fluorescence bioimaging can be drastically improved by fluorescent nanoparticles (NPs) that are many-fold brighter than organic dyes and fluorescent proteins. While the field is currently dominated by inorganic NPs, notably quantum dots (QDs), fluorescent polymer NPs encapsulating large quantities of dyes (dye-loaded NPs) have emerged recently as an attractive alternative. These new nanomaterials, inspired from the fields of polymeric drug delivery vehicles and advanced fluorophores, can combine superior brightness with biodegradability and low toxicity. Here, we describe the strategies for synthesis of dye-loaded polymer NPs by emulsion polymerization and assembly of pre-formed polymers. Superior brightness requires strong dye loading without aggregation-caused quenching (ACQ). Only recently several strategies of dye design were proposed to overcome ACQ in polymer NPs: aggregation induced emission (AIE), dye modification with bulky side groups and use of bulky hydrophobic counterions. The resulting NPs now surpass the brightness of QDs by ≈10-fold for a comparable size, and have started reaching the level of the brightest conjugated polymer NPs. Other properties, notably photostability, color, blinking, as well as particle size and surface chemistry are also systematically analyzed. Finally, major and emerging applications of dye-loaded NPs for in vitro and in vivo imaging are reviewed.


New Journal of Chemistry | 2003

Modulation of the solvent-dependent dual emission in 3-hydroxychromones by substituents

Andrey S. Klymchenko; Vasyl G. Pivovarenko; Turan Ozturk; Alexander P. Demchenko

3-Hydroxychromones (3HCs) are fluorescent dyes, which respond to solvent perturbations by shifts and changes in the relative intensity of the two well-separated bands in the emission spectra. These bands originate from an excited state intramolecular proton transfer (ESIPT) reaction, which can be modulated by different factors, including modifications in the 3HC chromophore. In view of the great importance of 3HCs as prospective basic elements of molecular sensors, we have performed the first systematic study on the correlation between 3HC structure and spectroscopic properties. Two series of known and newly synthesized 2-phenyl-3-hydroxychromones and 2-(2-benzo[b]furanyl)-3-hydroxychromones with varied electron-donor substituents, introduced on opposite sides of the chromophore, were compared in solvents of different polarities. The substitution of 2-phenyl for 2-(2-benzo[b]furanyl) and introduction of electron donors on the 2-aryl group not only shift the absorption and fluorescence spectra to the red, but also strongly modulate the ESIPT behavior, resulting in a dramatic increase of the intensity ratio of the two emission bands, IN*/IT*. In contrast, introduction of a 7-methoxy group results in exactly the opposite spectroscopic effects. All the studied 3HC dyes demonstrate a linear increase in ln(IN*/IT*) with the solvent polarity parameter ET(30). Substitution of 2-phenyl for 2-(2-benzo[b]furanyl) or introduction of electron donors on the 2-aryl group in 3HC increases the sensitivity of their IN*/IT* ratio to solvent polarity and shifts the optimal range of ratiometric polarity sensing to less polar solvents. The opposite effects are observed for 7-methoxy derivatives. These results allow a new generation of two-band fluorescent sensors based on 3HC that operate by the ESIPT mechanism to be proposed. By proper substituents their photophysical and sensing properties can be tuned over broad ranges.


Accounts of Chemical Research | 2017

Solvatochromic and Fluorogenic Dyes as Environment-Sensitive Probes: Design and Biological Applications

Andrey S. Klymchenko

Fluorescent environment-sensitive probes are specially designed dyes that change their fluorescence intensity (fluorogenic dyes) or color (e.g., solvatochromic dyes) in response to change in their microenvironment polarity, viscosity, and molecular order. The studies of the past decade, including those of our group, have shown that these molecules become universal tools in fluorescence sensing and imaging. In fact, any biomolecular interaction or change in biomolecular organization results in modification of the local microenvironment, which can be directly monitored by these types of probes. In this Account, the main examples of environment-sensitive probes are summarized according to their design concepts. Solvatochromic dyes constitute a large class of environment-sensitive probes which change their color in response to polarity. Generally, they are push-pull dyes undergoing intramolecular charge transfer. Emission of their highly polarized excited state shifts to the red in more polar solvents. Excited-state intramolecular proton transfer is the second key concept to design efficient solvatochromic dyes, which respond to the microenvironment by changing relative intensity of the two emissive tautomeric forms. Due to their sensitivity to polarity and hydration, solvatochromic dyes have been successfully applied to biological membranes for studying lipid domains (rafts), apoptosis and endocytosis. As fluorescent labels, solvatochromic dyes can detect practically any type of biomolecular interactions, involving proteins, nucleic acids and biomembranes, because the binding event excludes local water molecules from the interaction site. On the other hand, fluorogenic probes usually exploit intramolecular rotation (conformation change) as a design concept, with molecular rotors being main representatives. These probes were particularly efficient for imaging viscosity and lipid order in biomembranes as well as to light up biomolecular targets, such as antibodies, aptamers and receptors. The emerging concepts to achieve fluorogenic response to the microenvironment include ground-state isomerization, aggregation-caused quenching, and aggregation-induced emission. The ground-state isomerization exploits, for instance, polarity-dependent spiro-lactone formation in silica-rhodamines. The aggregation-caused quenching uses disruption of the self-quenched dimers and nanoassemblies of dyes in less polar environments of lipid membranes and biomolecules. The aggregation-induced emission couples target recognition with formation of highly fluorescent dye aggregates. Overall, solvatochromic and fluorogenic probes enable background-free bioimaging in wash-free conditions as well as quantitative analysis when combined with advanced microscopy, such as fluorescence lifetime (FLIM) and ratiometric imaging. Further development of fluorescent environment-sensitive probes should address some remaining problems: (i) improving their optical properties, especially brightness, photostability, and far-red to near-infrared operating range; (ii) minimizing nonspecific interactions of the probes in biological systems; (iii) their adaptation for advanced microscopies, notably for superresolution and in vivo imaging.


Journal of Physical Chemistry B | 2008

Excited-state intramolecular proton transfer distinguishes microenvironments in single- and double-stranded DNA.

Andrey S. Klymchenko; Volodymyr V. Shvadchak; Dmytro A. Yushchenko; Namrata Jain; Yves Mély

Herein, the efficient interaction of an environment-sensitive fluorophore that undergoes excited-state intramolecular proton transfer (ESIPT) with DNA has been realized by conjugation of a 3-hydroxychromone (3HC) with polycationic spermine. On binding to a double-stranded DNA (dsDNA), the ratio of the two emission bands of the 3HC conjugates changes up to 16-fold, so that emission of the ESIPT product increases dramatically. This suggests an efficient screening of the 3HC fluorophore from the water molecules in the DNA complex, which is probably realized by its intercalation into dsDNA. In sharp contrast, the 3HC conjugates show only moderate changes in the dual emission on binding to a single-stranded DNA (ssDNA), indicating a much higher fluorophore exposure to water at the binding site. Thus, the 3-hydroxychromone fluorophore being conjugated to spermine discriminates the binding of this polycation to dsDNA from that to ssDNA. Consequently, ESIPT-based dyes are promising for monitoring the interaction of polycationic molecules with DNA and probing the microenvironment of their DNA binding sites.

Collaboration


Dive into the Andrey S. Klymchenko's collaboration.

Top Co-Authors

Avatar

Yves Mély

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Guy Duportail

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Alexander P. Demchenko

Scientific and Technological Research Council of Turkey

View shared research outputs
Top Co-Authors

Avatar

Vasyl G. Pivovarenko

Taras Shevchenko National University of Kyiv

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Reisch

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mayeul Collot

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Nicolas Anton

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Pascal Didier

University of Strasbourg

View shared research outputs
Researchain Logo
Decentralizing Knowledge