Andrey S. Shaw
Washington University in St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrey S. Shaw.
Cell | 1996
Anthony J. Muslin; J. William Tanner; Paul M. Allen; Andrey S. Shaw
The highly conserved and ubiquitously expressed 14-3-3 family of proteins bind to a variety of proteins involved in signal transduction and cell cycle regulation. The nature and specificity of 14-3-3 binding is, however, not known. Here we show that 14-3-3 is a specific phosphoserine-binding protein. Using a panel of phosphorylated peptides based on Raf-1, we have defined the 14-3-3 binding motif and show that most of the known 14-3-3 binding proteins contain the motif. Peptides containing the motif could disrupt 14-3-3 complexes and inhibit maturation of Xenopus laevis oocytes. These results suggest that the interactions of 14-3-3 with signaling proteins are critical for the activation of signaling proteins. Our findings also suggest novel roles for serine/threonine phosphorylation in the assembly of protein-protein complexes.
Cell | 1998
Michael L. Dustin; Michael W. Olszowy; Amy D. Holdorf; Jun Li; Shannon K. Bromley; Naishadh Desai; Patricia Widder; Frederick Rosenberger; P. Anton van der Merwe; Paul M. Allen; Andrey S. Shaw
Recognition of antigen by T cells requires the formation of a specialized junction between the T cell and the antigen-presenting cell. This junction is generated by the recruitment and the exclusion of specific proteins from the contact area. The mechanisms that regulate these events are unknown. Here we demonstrate that ligand engagement of the adhesion molecule, CD2, initiates a process of protein segregation, CD2 clustering, and cytoskeletal polarization. Although protein segregation was not dependent on the cytoplasmic domain of CD2, CD2 clustering and cytoskeletal polarization required an interaction of the CD2 cytoplasmic domain with a novel SH3-containing protein. This novel protein, called CD2AP, is likely to facilitate receptor patterning in the contact area by linking specific adhesion receptors to the cytoskeleton.
Cell | 1994
Joanne Sloan-Lancaster; Andrey S. Shaw; Jonathan B. Rothbard; Paul M. Allen
Studies of T cell responses to altered peptide ligands (APLs) have provided functional evidence that a T cell receptor (TCR) can interpret subtle changes in its ligand, resulting in different phenotypic outcomes. One dramatic effect of APL stimulation with live antigen-presenting cells (APCs) is the induction of energy as opposed to proliferation. We investigated the intracellular signaling events involved in generating this unresponsiveness by comparing protein-tyrosine phosphorylation patterns after stimulation with anergy-inducing APL or the immunogenic peptide. In resting T cell clones, presentation with APL/live APC stimulated a unique pattern of TCR phospho-zeta species and a subsequent lack of association with zap70. This demonstrates that the TCR-CD3 complex can engage selective intracellular biochemical signaling pathways as a direct consequence of the nature of the ligand recognized and the initial phosphotyrosine pattern of the TCR-CD3 proteins, leading to different phenotypes.
Immunity | 1997
Andrey S. Shaw; Michael L. Dustin
We apologize to our many colleagues whose papers we could not cite because of space constraints. We are especially grateful to P. Allen, A. Chan, D. Cantrell, J. Green, B. Schreiber, M. Thomas, and E. Unanue for helpful discussion and comments about the manuscript. M. Thomas provided Figure 1Figure 1.
Journal of Clinical Investigation | 2010
Björn Hartleben; Markus Gödel; Catherine Meyer-Schwesinger; Shuya Liu; Theresa Ulrich; Sven Köbler; Thorsten Wiech; Florian Grahammer; Sebastian J. Arnold; Maja T. Lindenmeyer; Clemens D. Cohen; Hermann Pavenstädt; Dontscho Kerjaschki; Noboru Mizushima; Andrey S. Shaw; Gerd Walz; Tobias B. Huber
Injury and loss of podocytes are leading factors of glomerular disease and renal failure. The postmitotic podocyte is the primary glomerular target for toxic, immune, metabolic, and oxidant stress, but little is known about how this cell type copes with stress. Recently, autophagy has been identified as a major pathway that delivers damaged proteins and organelles to lysosomes in order to maintain cellular homeostasis. Here we report that podocytes exhibit an unusually high level of constitutive autophagy. Podocyte-specific deletion of autophagy-related 5 (Atg5) led to a glomerulopathy in aging mice that was accompanied by an accumulation of oxidized and ubiquitinated proteins, ER stress, and proteinuria. These changes resulted ultimately in podocyte loss and late-onset glomerulosclerosis. Analysis of pathophysiological conditions indicated that autophagy was substantially increased in glomeruli from mice with induced proteinuria and in glomeruli from patients with acquired proteinuric diseases. Further, mice lacking Atg5 in podocytes exhibited strongly increased susceptibility to models of glomerular disease. These findings highlight the importance of induced autophagy as a key homeostatic mechanism to maintain podocyte integrity. We postulate that constitutive and induced autophagy is a major protective mechanism against podocyte aging and glomerular injury, representing a putative target to ameliorate human glomerular disease and aging-related loss of renal function.
Journal of Immunology | 2006
Amanda L. Blasius; Emanuele Giurisato; Marina Cella; Robert D. Schreiber; Andrey S. Shaw; Marco Colonna
Type I IFN-producing cells (IPC) are sentinels of viral infections. Identification and functional characterization of these cells have been difficult because of their small numbers in blood and tissues and their complex cell surface phenotype. To overcome this problem in mice, mAbs recognizing IPC-specific cell surface molecules have been generated. In this study, we report the identification of new Abs specific for mouse IPC, which recognize the bone marrow stromal cell Ag 2 (BST2). Interestingly, previously reported IPC-specific Abs 120G8 and plasmacytoid dendritic cell Ag-1 also recognize BST2. BST2 is predominantly specific for mouse IPC in naive mice, but is up-regulated on most cell types following stimulation with type I IFNs and IFN-γ. The activation-induced promiscuous expression of BST2 described in this study has important implications for the use of anti-BST2 Abs in identification and depletion of IPC. Finally, we show that BST2 resides within an intracellular compartment corresponding to the Golgi apparatus, and may be involved in trafficking secreted cytokines in IPC.
Molecular and Cellular Biology | 2003
Tobias B. Huber; Björn Hartleben; Jeong Kim; Miriam Schmidts; Bernhard Schermer; Alexander Keil; Lotti Egger; Rachel L. Lecha; Christoph Borner; Hermann Pavenstädt; Andrey S. Shaw; Gerd Walz; Thomas Benzing
ABSTRACT Mutations of NPHS1 or NPHS2, the genes encoding nephrin and podocin, as well as the targeted disruption of CD2-associated protein (CD2AP), lead to heavy proteinuria, suggesting that all three proteins are essential for the integrity of glomerular podocytes, the visceral glomerular epithelial cells of the kidney. It has been speculated that these proteins participate in common signaling pathways; however, it has remained unclear which signaling proteins are actually recruited by the slit diaphragm protein complex in vivo. We demonstrate that both nephrin and CD2AP interact with the p85 regulatory subunit of phosphoinositide 3-OH kinase (PI3K) in vivo, recruit PI3K to the plasma membrane, and, together with podocin, stimulate PI3K-dependent AKT signaling in podocytes. Using two-dimensional gel analysis in combination with a phosphoserine-specific antiserum, we demonstrate that the nephrin-induced AKT mediates phosphorylation of several target proteins in podocytes. One such target is Bad; its phosphorylation and inactivation by 14-3-3 protects podocytes against detachment-induced cell death, suggesting that the nephrin-CD2AP-mediated AKT activity can regulate complex biological programs. Our findings reveal a novel role for the slit diaphragm proteins nephrin, CD2AP, and podocin and demonstrate that these three proteins, in addition to their structural functions, initiate PI3K/AKT-dependent signal transduction in glomerular podocytes.
Nature Immunology | 2001
Shannon K. Bromley; Andrea Iaboni; Simon J. Davis; Adrian Whitty; Jonathan M. Green; Andrey S. Shaw; Arthur Weiss; Michael L. Dustin
According to the two-signal model of T cell activation, costimulatory molecules augment T cell receptor (TCR) signaling, whereas adhesion molecules enhance TCR–MHC-peptide recognition. The structure and binding properties of CD28 imply that it may perform both functions, blurring the distinction between adhesion and costimulatory molecules. Our results show that CD28 on naïve T cells does not support adhesion and has little or no capacity for directly enhancing TCR–MHC-peptide interactions. Instead of being dependent on costimulatory signaling, we propose that a key function of the immunological synapse is to generate a cellular microenvironment that favors the interactions of potent secondary signaling molecules, such as CD28.
American Journal of Pathology | 2001
Neng-Yao Shih; Jun Li; Ramzi S. Cotran; Peter Mundel; Jeffrey H. Miner; Andrey S. Shaw
CD2AP, an adapter protein containing multiple SH3 domains, plays a critical role in kidney function. Mice lacking CD2AP die soon after birth because of kidney failure. In the kidney, CD2AP is expressed in glomerular podocytes, which suggests that it may play a role in a specialized adhesion complex known as the slit diaphragm. One of the major components of the slit diaphragm is nephrin, a podocyte-specific protein. Here we demonstrate that CD2AP localizes to the slit diaphragm in podocytes using immunoelectron microscopy and that nephrin and CD2AP co-immunoprecipitate from a podocyte cell line. The specificity of this interaction was verified by mapping studies, which demonstrated that a novel domain at the C terminus of CD2AP interacts with the C-terminal portion of the nephrin cytoplasmic domain. These studies lend further support to the idea that CD2AP plays a role in the structural integrity of the slit diaphragm.
Molecular and Cellular Biology | 2002
AnhCo Nguyen; W. Richard Burack; Jeffrey L. Stock; Robert L. Kortum; Oleg V. Chaika; Maryam Afkarian; William J. Muller; Kenneth M. Murphy; Deborah K. Morrison; Robert E. Lewis; John D. McNeish; Andrey S. Shaw
ABSTRACT While scaffold proteins are thought to be key components of signaling pathways, their exact function is unknown. By preassembling multiple components of signaling cascades, scaffolds are predicted to influence the efficiency and/or specificity of signaling events. Here we analyze a potential scaffold of the Ras/mitogen-activated protein kinase (MAPK) pathway, kinase suppressor of Ras (KSR), by generating KSR-deficient mice. KSR-deficient mice were grossly normal even though ERK kinase activation was attenuated to a degree sufficient to block T-cell activation and inhibit tumor development. Consistent with its role as a scaffold, high-molecular-weight complexes containing KSR, MEK, and ERK were lost in the absence of KSR. This demonstrates that KSR is a bona fide scaffold that is not required for but enhances signaling via the Ras/MAPK signaling pathway.