Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrey V. Malkovskiy is active.

Publication


Featured researches published by Andrey V. Malkovskiy.


Biomaterials | 2013

The Effect of Bioengineered Acellular Collagen Patch on Cardiac Remodeling and Ventricular Function post Myocardial Infarction

Vahid Serpooshan; Mingming Zhao; Scott Metzler; Ke Wei; Parisha B. Shah; Andrew Y. Wang; Morteza Mahmoudi; Andrey V. Malkovskiy; Jayakumar Rajadas; Manish J. Butte; Daniel Bernstein; Pilar Ruiz-Lozano

Regeneration of the damaged myocardium is one of the most challenging fronts in the field of tissue engineering due to the limited capacity of adult heart tissue to heal and to the mechanical and structural constraints of the cardiac tissue. In this study we demonstrate that an engineered acellular scaffold comprising type I collagen, endowed with specific physiomechanical properties, improves cardiac function when used as a cardiac patch following myocardial infarction. Patches were grafted onto the infarcted myocardium in adult murine hearts immediately after ligation of left anterior descending artery and the physiological outcomes were monitored by echocardiography, and by hemodynamic and histological analyses four weeks post infarction. In comparison to infarcted hearts with no treatment, hearts bearing patches preserved contractility and significantly protected the cardiac tissue from injury at the anatomical and functional levels. This improvement was accompanied by attenuated left ventricular remodeling, diminished fibrosis, and formation of a network of interconnected blood vessels within the infarct. Histological and immunostaining confirmed integration of the patch with native cardiac cells including fibroblasts, smooth muscle cells, epicardial cells, and immature cardiomyocytes. In summary, an acellular biomaterial with specific biomechanical properties promotes the endogenous capacity of the infarcted myocardium to attenuate remodeling and improve heart function following myocardial infarction.


Journal of Biological Chemistry | 2012

Chaperone activity of small heat shock proteins underlies therapeutic efficacy in experimental autoimmune encephalomyelitis

Michael P. Kurnellas; Sara E. Brownell; Leon Su; Andrey V. Malkovskiy; Jayakumar Rajadas; Gregory Dolganov; Sidharth Chopra; Gary K. Schoolnik; Raymond A. Sobel; Jonathan Webster; Shalina S. Ousman; Rachel A. Becker; Lawrence Steinman; Jonathan B. Rothbard

Background: The small heat shock protein, HspB5, is therapeutic in experimental autoimmune encephalomyelitis. Results: Eight other human sHsps, a mycobacterial sHsp, and a linear peptide from HspB5 were equally effective therapeutics. Conclusion: All of the therapeutic proteins and peptides were also molecular chaperones. Significance: Correlation between chaperone activity and therapeutic function supports data demonstrating sHsps bind inflammatory mediators in plasma. To determine whether the therapeutic activity of αB crystallin, small heat shock protein B5 (HspB5), was shared with other human sHsps, a set of seven human family members, a mutant of HspB5 G120 known to exhibit reduced chaperone activity, and a mycobacterial sHsp were expressed and purified from bacteria. Each of the recombinant proteins was shown to be a functional chaperone, capable of inhibiting aggregation of denatured insulin with varying efficiency. When injected into mice at the peak of disease, they were all effective in reducing the paralysis in experimental autoimmune encephalomyelitis. Additional structure activity correlations between chaperone activity and therapeutic function were established when linear regions within HspB5 were examined. A single region, corresponding to residues 73–92 of HspB5, forms amyloid fibrils, exhibited chaperone activity, and was an effective therapeutic for encephalomyelitis. The linkage of the three activities was further established by demonstrating individual substitutions of critical hydrophobic amino acids in the peptide resulted in the loss of all of the functions.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Transdermal deferoxamine prevents pressure-induced diabetic ulcers

Dominik Duscher; Evgenios Neofytou; Victor W. Wong; Zeshaan N. Maan; Robert C. Rennert; Mohammed Inayathullah; Michael Januszyk; Melanie Rodrigues; Andrey V. Malkovskiy; Arnetha J. Whitmore; Graham G. Walmsley; Michael G. Galvez; Alexander J. Whittam; Michael Brownlee; Jayakumar Rajadas; Geoffrey C. Gurtner

Significance Diabetes is the leading cause of nontraumatic amputations. There are no effective therapies to prevent diabetic ulcer formation and only modestly effective technologies to help with their healing. To enhance diabetic wound healing we designed a transdermal delivery system containing the FDA-approved small molecule deferoxamine, an iron chelator that increases defective hypoxia inducible factor-1 alpha transactivation in diabetes by preventing iron-catalyzed reactive oxygen stress. This system overcomes the challenge of delivering hydrophilic molecules through the normally impermeable stratum corneum and both prevents diabetic ulcer formation and improves the healing of existing diabetic wounds. This represents a prophylactic pharmacological agent to prevent ulcer formation that is rapidly translatable into the clinic and has the potential to ultimately transform the care and prevention of diabetic complications. There is a high mortality in patients with diabetes and severe pressure ulcers. For example, chronic pressure sores of the heels often lead to limb loss in diabetic patients. A major factor underlying this is reduced neovascularization caused by impaired activity of the transcription factor hypoxia inducible factor-1 alpha (HIF-1α). In diabetes, HIF-1α function is compromised by a high glucose-induced and reactive oxygen species-mediated modification of its coactivator p300, leading to impaired HIF-1α transactivation. We examined whether local enhancement of HIF-1α activity would improve diabetic wound healing and minimize the severity of diabetic ulcers. To improve HIF-1α activity we designed a transdermal drug delivery system (TDDS) containing the FDA-approved small molecule deferoxamine (DFO), an iron chelator that increases HIF-1α transactivation in diabetes by preventing iron-catalyzed reactive oxygen stress. Applying this TDDS to a pressure-induced ulcer model in diabetic mice, we found that transdermal delivery of DFO significantly improved wound healing. Unexpectedly, prophylactic application of this transdermal delivery system also prevented diabetic ulcer formation. DFO-treated wounds demonstrated increased collagen density, improved neovascularization, and reduction of free radical formation, leading to decreased cell death. These findings suggest that transdermal delivery of DFO provides a targeted means to both prevent ulcer formation and accelerate diabetic wound healing with the potential for rapid clinical translation.


Cell Host & Microbe | 2015

Filamentous Bacteriophage Promote Biofilm Assembly and Function

Patrick R. Secor; Johanna M. Sweere; Lia A. Michaels; Andrey V. Malkovskiy; Daniel V. Lazzareschi; Ethan Katznelson; Jayakumar Rajadas; Michael E. Birnbaum; Allison Arrigoni; Kathleen R. Braun; Stephen P. Evanko; David A. Stevens; Werner Kaminsky; Pradeep K. Singh; William C. Parks; Paul L. Bollyky

Biofilms-communities of bacteria encased in a polymer-rich matrix-confer bacteria with the ability to persist in pathologic host contexts, such as the cystic fibrosis (CF) airways. How bacteria assemble polymers into biofilms is largely unknown. We find that the extracellular matrix produced by Pseudomonas aeruginosa self-assembles into a liquid crystal through entropic interactions between polymers and filamentous Pf bacteriophages, which are long, negatively charged filaments. This liquid crystalline structure enhances biofilm function by increasing adhesion and tolerance to desiccation and antibiotics. Pf bacteriophages are prevalent among P. aeruginosa clinical isolates and were detected in CF sputum. The addition of Pf bacteriophage to sputum polymers or serum was sufficient to drive their rapid assembly into viscous liquid crystals. Fd, a related bacteriophage of Escherichia coli, has similar biofilm-building capabilities. Targeting filamentous bacteriophage or the liquid crystalline organization of the biofilm matrix may represent antibacterial strategies.


Biointerphases | 2013

Surface modification of a polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) nanocomposite polymer as a stent coating for enhanced capture of endothelial progenitor cells

Aaron Tan; Yasmin Farhatnia; Debbie Goh; G Natasha; Achala de Mel; Jing Jye Lim; Swee-Hin Teoh; Andrey V. Malkovskiy; Reema Chawla; Jayakumar Rajadas; Brian G. Cousins; Michael R. Hamblin; Mohammad S. Alavijeh; Alexander M. Seifalian

An unmet need exists for the development of next-generation multifunctional nanocomposite materials for biomedical applications, particularly in the field of cardiovascular regenerative biology. Herein, we describe the preparation and characterization of a novel polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) nanocomposite polymer with covalently attached anti-CD34 antibodies to enhance capture of circulating endothelial progenitor cells (EPC). This material may be used as a new coating for bare metal stents used after balloon angioplasty to improve re-endothelialization. Biophysical characterization techniques were used to assess POSS-PCU and its subsequent functionalization with anti-CD34 antibodies. Results indicated successful covalent attachment of anti-CD34 antibodies on the surface of POSS-PCU leading to an increased propensity for EPC capture, whilst maintaining in vitro biocompatibility and hemocompatibility. POSS-PCU has already been used in 3 first-in-man studies, as a bypass graft, lacrimal duct and a bioartificial trachea. We therefore postulate that its superior biocompatibility and unique biophysical properties would render it an ideal candidate for coating medical devices, with stents as a prime example. Taken together, anti-CD34 functionalized POSS-PCU could form the basis of a nano-inspired polymer platform for the next generation stent coatings.


Biomaterials | 2014

Promotion of airway anastomotic microvascular regeneration and alleviation of airway ischemia by deferoxamine nanoparticles.

Xinguo Jiang; Andrey V. Malkovskiy; Wen Tian; Yon K. Sung; Wenchao Sun; Joe L. Hsu; Sathish Manickam; Dhananjay Wagh; Lydia Marie Joubert; Gregg L. Semenza; Jayakumar Rajadas; Mark R. Nicolls

Airway tissue ischemia and hypoxia in human lung transplantation is a consequence of the sacrifice of the bronchial circulation during the surgical procedure and is a major risk factor for the development of airway anastomotic complications. Augmented expression of hypoxia-inducible factor (HIF)-1α promotes microvascular repair and alleviates allograft ischemia and hypoxia. Deferoxamine mesylate (DFO) is an FDA-approved iron chelator which has been shown to upregulate cellular HIF-1α. Here, we developed a nanoparticle formulation of DFO that can be topically applied to airway transplants at the time of surgery. In a mouse orthotopic tracheal transplant (OTT) model, the DFO nanoparticle was highly effective in enhancing airway microvascular perfusion following transplantation through the production of the angiogenic factors, placental growth factor (PLGF) and stromal cell-derived factor (SDF)-1. The endothelial cells in DFO treated airways displayed higher levels of p-eNOS and Ki67, less apoptosis, and decreased production of perivascular reactive oxygen species (ROS) compared to vehicle-treated airways. In summary, a DFO formulation topically-applied at the time of surgery successfully augmented airway anastomotic microvascular regeneration and the repair of alloimmune-injured microvasculature. This approach may be an effective topical transplant-conditioning therapy for preventing airway complications following clinical lung transplantation.


Biomaterials | 2015

(Pyr1)-Apelin-13 delivery via nano-liposomal encapsulation attenuates pressure overload-induced cardiac dysfunction

Vahid Serpooshan; Senthilkumar Sivanesan; Xiaoran Huang; Morteza Mahmoudi; Andrey V. Malkovskiy; Mingming Zhao; Mohammed Inayathullah; Dhananjay Wagh; Xuexiang J. Zhang; Scott Metzler; Daniel Bernstein; Joseph C. Wu; Pilar Ruiz-Lozano; Jayakumar Rajadas

Nanoparticle-mediated sustained delivery of therapeutics is one of the highly effective and increasingly utilized applications of nanomedicine. Here, we report the development and application of a drug delivery system consisting of polyethylene glycol (PEG)-conjugated liposomal nanoparticles as an efficient in vivo delivery approach for [Pyr1]-apelin-13 polypeptide. Apelin is an adipokine that regulates a variety of biological functions including cardiac hypertrophy and hypertrophy-induced heart failure. The clinical use of apelin has been greatly impaired by its remarkably short half-life in circulation. Here, we investigate whether [Pyr1]-apelin-13 encapsulation in liposome nanocarriers, conjugated with PEG polymer on their surface, can prolong apelin stability in the blood stream and potentiate apelin beneficial effects in cardiac function. Atomic force microscopy and dynamic light scattering were used to assess the structure and size distribution of drug-laden nanoparticles. [Pyr1]-apelin-13 encapsulation in PEGylated liposomal nanocarriers resulted in sustained and extended drug release both in vitro and in vivo. Moreover, intraperitoneal injection of [Pyr1]-apelin-13 nanocarriers in a mouse model of pressure-overload induced heart failure demonstrated a sustainable long-term effect of [Pyr1]-apelin-13 in preventing cardiac dysfunction. We concluded that this engineered nanocarrier system can serve as a delivery platform for treating heart injuries through sustained bioavailability of cardioprotective therapeutics.


Science Translational Medicine | 2017

Pharmacological rescue of diabetic skeletal stem cell niches

Ruth Tevlin; Eun Young Seo; Owen Marecic; Adrian McArdle; Xinming Tong; Bryan Zimdahl; Andrey V. Malkovskiy; Rahul Sinha; Gunsagar Gulati; Xiyan Li; Taylor Wearda; Rachel M. Morganti; Michael Lopez; Ryan C. Ransom; Christopher Duldulao; Melanie Rodrigues; Allison Nguyen; Michael Januszyk; Zeshaan N. Maan; Kevin J. Paik; Kshemendra-Senarath Yapa; Jayakumar Rajadas; Derrick C. Wan; Geoffrey C. Gurtner; Michael Snyder; Philip A. Beachy; Fan Yang; Stuart B. Goodman; Irving L. Weissman; Charles K. Chan

Local delivery of a missing growth factor to the skeletal stem cell niche restores bone healing in diabetic mice. Stem cells: The key to boosting bone healing in diabetes Among a myriad of difficulties, people with diabetes have problems with their bones; after a break, their bones do not heal well. Tevlin et al. use mice to investigate the cause and to devise a solution. In several models of diabetes, skeletal stem cells, which normally multiply to repair a bone injury, failed to do so. The high blood concentrations of TNFα in these diabetic mice inhibited a growth factor within the stem cell niche. The authors succeeded in reversing this deficit; delivery of the missing factor directly to the niche restored the expansion of stem cells after injury and normalized bone healing. Correction of the inhospitable niche environment for skeletal stem cells is a promising approach for this complication of diabetes and perhaps for other stem cell–based diseases. Diabetes mellitus (DM) is a metabolic disease frequently associated with impaired bone healing. Despite its increasing prevalence worldwide, the molecular etiology of DM-linked skeletal complications remains poorly defined. Using advanced stem cell characterization techniques, we analyzed intrinsic and extrinsic determinants of mouse skeletal stem cell (mSSC) function to identify specific mSSC niche–related abnormalities that could impair skeletal repair in diabetic (Db) mice. We discovered that high serum concentrations of tumor necrosis factor–α directly repressed the expression of Indian hedgehog (Ihh) in mSSCs and in their downstream skeletogenic progenitors in Db mice. When hedgehog signaling was inhibited during fracture repair, injury-induced mSSC expansion was suppressed, resulting in impaired healing. We reversed this deficiency by precise delivery of purified Ihh to the fracture site via a specially formulated, slow-release hydrogel. In the presence of exogenous Ihh, the injury-induced expansion and osteogenic potential of mSSCs were restored, culminating in the rescue of Db bone healing. Our results present a feasible strategy for precise treatment of molecular aberrations in stem and progenitor cell populations to correct skeletal manifestations of systemic disease.


Microbiology | 2016

Pf4 bacteriophage produced by Pseudomonas aeruginosa inhibits Aspergillus fumigatus metabolism via iron sequestration.

Jack C. Penner; Jose A. G. Ferreira; Patrick R. Secor; Johanna M. Sweere; Maria K. Birukova; Lydia-Marie Joubert; Janus A. J. Haagensen; Omar Garcia; Andrey V. Malkovskiy; Gernot Kaber; Hasan Nazik; Robert Manasherob; Alfred M. Spormann; Karl V. Clemons; David A. Stevens; Paul L. Bollyky

Pseudomonas aeruginosa (Pa) and Aspergillus fumigatus (Af) are major human pathogens known to interact in a variety of disease settings, including airway infections in cystic fibrosis. We recently reported that clinical CF isolates of Pa inhibit the formation and growth of Af biofilms. Here, we report that the bacteriophage Pf4, produced by Pa, can inhibit the metabolic activity of Af biofilms. This phage-mediated inhibition was dose dependent, ablated by phage denaturation, and was more pronounced against preformed Af biofilm rather than biofilm formation. In contrast, planktonic conidial growth was unaffected. Two other phages, Pf1 and fd, did not inhibit Af, nor did supernatant from a Pa strain incapable of producing Pf4. Pf4, but not Pf1, attaches to Af hyphae in an avid and prolonged manner, suggesting that Pf4-mediated inhibition of Af may occur at the biofilm surface. We show that Pf4 binds iron, thus denying Af a crucial resource. Consistent with this, the inhibition of Af metabolism by Pf4 could be overcome with supplemental ferric iron, with preformed biofilm more resistant to reversal. To our knowledge, this is the first report of a bacterium producing a phage that inhibits the growth of a fungus and the first description of a phage behaving as an iron chelator in a biological system.


Gastroenterology | 2015

A Thermo-Sensitive Delivery Platform for Topical Administration of Inflammatory Bowel Disease Therapies

Sidhartha R. Sinha; Linh P. Nguyen; Mohammed Inayathullah; Andrey V. Malkovskiy; Frezghi Habte; Jayakumar Rajadas; Aida Habtezion

Systemic therapies for inflammatory bowel disease are associated with an increased risk of infections and malignancies. Topical therapies reduce systemic exposure, but can be difficult to retain or have limited proximal distribution. To mitigate these issues, we developed a thermo-sensitive platform, using a polymer-based system that is liquid at room temperature but turns into a viscous gel on reaching body temperature. After rectal administration to mice with dextran sulfate sodium-induced colitis, the platform carrying budesonide or mesalamine becomes more viscoelastic near body temperature. Mice given the drug-containing platform gained more weight and had reduced histologic and biologic features of colitis than mice given the platform alone or liquid drugs via enema. Image analysis showed that enemas delivered with and without the platform reached similar distances in the colons of mice, but greater colonic retention was achieved by using the platform.

Collaboration


Dive into the Andrey V. Malkovskiy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Morteza Mahmoudi

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge