Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrey V. Struts is active.

Publication


Featured researches published by Andrey V. Struts.


Nature Structural & Molecular Biology | 2011

Retinal dynamics underlie its switch from inverse agonist to agonist during rhodopsin activation

Andrey V. Struts; Gilmar F. Salgado; Karina Martínez-Mayorga; Michael F. Brown

X-ray and magnetic resonance approaches, though central to studies of G protein–coupled receptor (GPCR)-mediated signaling, cannot address GPCR protein dynamics or plasticity. Here we show that solid-state 2H NMR relaxation elucidates picosecond-to-nanosecond–timescale motions of the retinal ligand that influence larger-scale functional dynamics of rhodopsin in membranes. We propose a multiscale activation mechanism whereby retinal initiates collective helix fluctuations in the meta I–meta II equilibrium on the microsecond-to-millisecond timescale.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin

Andrey V. Struts; Gilmar F. Salgado; Michael F. Brown

Rhodopsin is a canonical member of the family of G protein-coupled receptors, which transmit signals across cellular membranes and are linked to many drug interventions in humans. Here we show that solid-state 2H NMR relaxation allows investigation of light-induced changes in local ps–ns time scale motions of retinal bound to rhodopsin. Site-specific 2H labels were introduced into methyl groups of the retinal ligand that are essential to the activation process. We conducted solid-state 2H NMR relaxation (spin-lattice, T1Z, and quadrupolar-order, T1Q) experiments in the dark, Meta I, and Meta II states of the photoreceptor. Surprisingly, we find the retinylidene methyl groups exhibit site-specific differences in dynamics that change upon light excitation—even more striking, the C9-methyl group is a dynamical hotspot that corresponds to a crucial functional hotspot of rhodopsin. Following 11-cis to trans isomerization, the 2H NMR data suggest the β-ionone ring remains in its hydrophobic binding pocket in all three states of the protein. We propose a multiscale activation mechanism with a complex energy landscape, whereby the photonic energy is directed against the E2 loop by the C13-methyl group, and toward helices H3 and H5 by the C5-methyl of the β-ionone ring. Changes in retinal structure and dynamics initiate activating fluctuations of transmembrane helices H5 and H6 in the Meta I–Meta II equilibrium of rhodopsin. Our proposals challenge the Standard Model whereby a single light-activated receptor conformation yields the visual response—rather an ensemble of substates is present, due to the entropy gain produced by photolysis of the inhibitory retinal lock.


Biochimica et Biophysica Acta | 2010

Retinal dynamics during light activation of rhodopsin revealed by solid-state NMR spectroscopy

Michael F. Brown; Gilmar F. Salgado; Andrey V. Struts

Rhodopsin is a canonical member of class A of the G protein-coupled receptors (GPCRs) that are implicated in many of the drug interventions in humans and are of great pharmaceutical interest. The molecular mechanism of rhodopsin activation remains unknown as atomistic structural information for the active metarhodopsin II state is currently lacking. Solid-state (2)H NMR constitutes a powerful approach to study atomic-level dynamics of membrane proteins. In the present application, we describe how information is obtained about interactions of the retinal cofactor with rhodopsin that change with light activation of the photoreceptor. The retinal methyl groups play an important role in rhodopsin function by directing conformational changes upon transition into the active state. Site-specific (2)H labels have been introduced into the methyl groups of retinal and solid-state (2)H NMR methods applied to obtain order parameters and correlation times that quantify the mobility of the cofactor in the inactive dark state, as well as the cryotrapped metarhodopsin I and metarhodopsin II states. Analysis of the angular-dependent (2)H NMR line shapes for selectively deuterated methyl groups of rhodopsin in aligned membranes enables determination of the average ligand conformation within the binding pocket. The relaxation data suggest that the beta-ionone ring is not expelled from its hydrophobic pocket in the transition from the pre-activated metarhodopsin I to the active metarhodopsin II state. Rather, the major structural changes of the retinal cofactor occur already at the metarhodopsin I state in the activation process. The metarhodopsin I to metarhodopsin II transition involves mainly conformational changes of the protein within the membrane lipid bilayer rather than the ligand. The dynamics of the retinylidene methyl groups upon isomerization are explained by an activation mechanism involving cooperative rearrangements of extracellular loop E2 together with transmembrane helices H5 and H6. These activating movements are triggered by steric clashes of the isomerized all-trans retinal with the beta4 strand of the E2 loop and the side chains of Glu(122) and Trp(265) within the binding pocket. The solid-state (2)H NMR data are discussed with regard to the pathway of the energy flow in the receptor activation mechanism.


Biochimica et Biophysica Acta | 2012

Molecular simulations and solid-state NMR investigate dynamical structure in rhodopsin activation ☆

Blake Mertz; Andrey V. Struts; Scott E. Feller; Michael F. Brown

Rhodopsin has served as the primary model for studying G protein-coupled receptors (GPCRs)-the largest group in the human genome, and consequently a primary target for pharmaceutical development. Understanding the functions and activation mechanisms of GPCRs has proven to be extraordinarily difficult, as they are part of a complex signaling cascade and reside within the cell membrane. Although X-ray crystallography has recently solved several GPCR structures that may resemble the activated conformation, the dynamics and mechanism of rhodopsin activation continue to remain elusive. Notably solid-state ((2))H NMR spectroscopy provides key information pertinent to how local dynamics of the retinal ligand change during rhodopsin activation. When combined with molecular mechanics simulations of proteolipid membranes, a new paradigm for the rhodopsin activation process emerges. Experiment and simulation both suggest that retinal isomerization initiates the rhodopsin photocascade to yield not a single activated structure, but rather an ensemble of activated conformational states. This article is part of a Special Issue entitled: Membrane protein structure and function.


Photochemistry and Photobiology | 2009

Retinal Conformation and Dynamics in Activation of Rhodopsin Illuminated by Solid‐state 2H NMR Spectroscopy†

Michael F. Brown; Karina Martínez-Mayorga; Koji Nakanishi; Gilmar F. Salgado; Andrey V. Struts

Solid‐state NMR spectroscopy gives a powerful avenue for investigating G protein‐coupled receptors and other integral membrane proteins in a native‐like environment. This article reviews the use of solid‐state 2H NMR to study the retinal cofactor of rhodopsin in the dark state as well as the meta I and meta II photointermediates. Site‐specific 2H NMR labels have been introduced into three regions (methyl groups) of retinal that are crucially important for the photochemical function of rhodopsin. Despite its phenomenal stability 2H NMR spectroscopy indicates retinal undergoes rapid fluctuations within the protein binding cavity. The spectral lineshapes reveal the methyl groups spin rapidly about their three‐fold (C3) axes with an order parameter for the off‐axial motion of For the dark state, the 2H NMR structure of 11‐cis‐retinal manifests torsional twisting of both the polyene chain and the β‐ionone ring due to steric interactions of the ligand and the protein. Retinal is accommodated within the rhodopsin binding pocket with a negative pretwist about the C11=C12 double bond. Conformational distortion explains its rapid photochemistry and reveals the trajectory of the 11‐cis to trans isomerization. In addition, 2H NMR has been applied to study the retinylidene dynamics in the dark and light‐activated states. Upon isomerization there are drastic changes in the mobility of all three methyl groups. The relaxation data support an activation mechanism whereby the β‐ionone ring of retinal stays in nearly the same environment, without a large displacement of the ligand. Interactions of the β‐ionone ring and the retinylidene Schiff base with the protein transmit the force of the retinal isomerization. Solid‐state 2H NMR thus provides information about the flow of energy that triggers changes in hydrogen‐bonding networks and helix movements in the activation mechanism of the photoreceptor.


Biophysical Journal | 2008

Fluid Mechanical Matching of H+-ATP Synthase Subunit c-Ring with Lipid Membranes Revealed by 2H Solid-State NMR

Masatoshi Kobayashi; Andrey V. Struts; Toshimichi Fujiwara; Michael F. Brown; Hideo Akutsu

The F(1)F(o)-ATP synthase utilizes the transmembrane H(+) gradient for the synthesis of ATP. F(o) subunit c-ring plays a key role in transporting H(+) through F(o) in the membrane. We investigated the interactions of Escherichia coli subunit c with dimyristoylphosphatidylcholine (DMPC-d(54)) at lipid/protein ratios of 50:1 and 20:1 by means of (2)H-solid-state NMR. In the liquid-crystalline state of DMPC, the (2)H-NMR moment values and the order parameter (S(CD)) profile were little affected by the presence of subunit c, suggesting that the bilayer thickness in the liquid-crystalline state is matched to the transmembrane hydrophobic surface of subunit c. On the other hand, hydrophobic mismatch of subunit c with the lipid bilayer was observed in the gel state of DMPC. Moreover, the viscoelasticity represented by a square-law function of the (2)H-NMR relaxation was also little influenced by subunit c in the fluid phase, in contrast with flexible nonionic detergents or rigid additives. Thus, the hydrophobic matching of the lipid bilayer to subunit c involves at least two factors, the hydrophobic length and the fluid mechanical property. These findings may be important for the torque generation in the rotary catalytic mechanism of the F(1)F(o)-ATPse molecular motor.


Optics and Spectroscopy | 2015

Spectral methods for study of the G-protein-coupled receptor rhodopsin: I. Vibrational and electronic spectroscopy

Andrey V. Struts; A. V. Barmasov; Michael F. Brown

Here we review the application of modern spectral methods for the study of G-protein-coupled receptors (GPCRs) using rhodopsin as a prototype. Because X-ray analysis gives us immobile snapshots of protein conformations, it is imperative to apply spectroscopic methods for elucidating their function: vibrational (Raman, FTIR), electronic (UV-visible absorption, fluorescence) spectroscopies, and magnetic resonance (electron paramagnetic resonance, EPR), and nuclear magnetic resonance (NMR). In the first of the two companion articles, we discuss the application of optical spectroscopy for studying rhodopsin in a membrane environment. Information is obtained regarding the time-ordered sequence of events in rhodopsin activation. Isomerization of the chromophore and deprotonation of the retinal Schiff base leads to a structural change of the protein involving the motion of helices H5 and H6 in a pH-dependent process. Information is obtained that is unavailable from X-ray crystallography, which can be combined with spectroscopic studies to achieve a more complete understanding of GPCR function.


Archive | 2014

CHAPTER 17:Structural Dynamics of Retinal in Rhodopsin Activation Viewed by Solid-State 2H NMR Spectroscopy

Michael F. Brown; Andrey V. Struts

Rhodopsin is a member of the family of G-protein-coupled receptors (GPCRs) that are implicated in cellular signaling and constitute the majority of human pharmaceutical targets. Solid-state 2H NMR spectroscopy can be used to obtain structural and dynamical information unavailable from X-ray crystallography and other biophysical methods. In this approach, site-specific 2H labels are introduced into the methyl groups of retinal that play an important role in rhodopsin function. Analysis of angular-dependent 2H NMR lineshapes for rhodopsin in aligned membranes enables determination of the average ligand conformation within the binding pocket. Solid-state 2H NMR relaxation methods further allow the investigation of light-induced changes in local ps–ns timescale motions of retinal bound to rhodopsin. In terms of a multi-scale activation mechanism, changes in retinal structure and dynamics upon photon absorption activate fluctuations of transmembrane helices H5 and H6 in rhodopsin. Allosteric interactions due to light absorption of rhodopsin are propagated from the retinal-binding pocket to the binding site of the G-protein transducin. An ensemble of substates in the Meta I–Meta II equilibrium yields the first amplification step in the visual response and may be typical for the activation mechanisms of other GPCRs in a membrane environment.


Optics and Spectroscopy | 2016

Spectral methods for study of the G-protein-coupled receptor rhodopsin. II. Magnetic resonance methods

Andrey V. Struts; A. V. Barmasov; Michael F. Brown

This article continues our review of spectroscopic studies of G-protein-coupled receptors. Magnetic resonance methods including electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) provide specific structural and dynamical data for the protein in conjunction with optical methods (vibrational, electronic spectroscopy) as discussed in the accompanying article. An additional advantage is the opportunity to explore the receptor proteins in the natural membrane lipid environment. Solid-state 2H and 13C NMR methods yield information about both the local structure and dynamics of the cofactor bound to the protein and its light-induced changes. Complementary site-directed spin-labeling studies monitor the structural alterations over larger distances and correspondingly longer time scales. A multiscale reaction mechanism describes how local changes of the retinal cofactor unlock the receptor to initiate large-scale conformational changes of rhodopsin. Activation of the G-protein-coupled receptor involves an ensemble of conformational substates within the rhodopsin manifold that characterize the dynamically active receptor.


Methods of Molecular Biology | 2015

Investigation of Rhodopsin Dynamics in Its Signaling State by Solid-State Deuterium NMR Spectroscopy

Andrey V. Struts; Udeep Chawla; Suchithranga M.D.C. Perera; Michael F. Brown

Site-directed deuterium NMR spectroscopy is a valuable tool to study the structural dynamics of biomolecules in cases where solution NMR is inapplicable. Solid-state (2)H NMR spectral studies of aligned membrane samples of rhodopsin with selectively labeled retinal provide information on structural changes of the chromophore in different protein states. Moreover (2)H NMR relaxation time measurements allow one to study the dynamics of the ligand during the transition from the inactive to the active state. Here we describe the methodological aspects of solid-state (2)H NMR spectroscopy for functional studies of rhodopsin, with an emphasis on the dynamics of the retinal cofactor. We provide complete protocols for the preparation of NMR samples of rhodopsin with 11-cis-retinal selectively deuterated at the methyl groups in aligned membranes. In addition we review optimized conditions for trapping the rhodopsin photointermediates; and we address the challenging problem of trapping the signaling state of rhodopsin in aligned membrane films.

Collaboration


Dive into the Andrey V. Struts's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carolina L. Nascimento

Florida Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Charitha Guruge

Florida Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Nasri Nesnas

Florida Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Samira Faylough

Florida Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge