Andries J. van Tonder
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andries J. van Tonder.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Miao He; Mohammed Sebaihia; Trevor D. Lawley; Richard A. Stabler; Lisa F. Dawson; Melissa J. Martin; Kathryn E. Holt; Helena M. B. Seth-Smith; Michael A. Quail; Richard Rance; Karen Brooks; Carol Churcher; David J. Harris; Stephen D. Bentley; Christine Burrows; Louise Clark; Craig Corton; Vicky Murray; Graham Rose; Scott Thurston; Andries J. van Tonder; Danielle Walker; Brendan W. Wren; Gordon Dougan; Julian Parkhill
Clostridium difficile has rapidly emerged as the leading cause of antibiotic-associated diarrheal disease, with the transcontinental spread of various PCR ribotypes, including 001, 017, 027 and 078. However, the genetic basis for the emergence of C. difficile as a human pathogen is unclear. Whole genome sequencing was used to analyze genetic variation and virulence of a diverse collection of thirty C. difficile isolates, to determine both macro and microevolution of the species. Horizontal gene transfer and large-scale recombination of core genes has shaped the C. difficile genome over both short and long time scales. Phylogenetic analysis demonstrates C. difficile is a genetically diverse species, which has evolved within the last 1.1–85 million years. By contrast, the disease-causing isolates have arisen from multiple lineages, suggesting that virulence evolved independently in the highly epidemic lineages.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Andrew P. Jackson; Andrew Berry; Martin Aslett; Harriet C. Allison; Peter Burton; Jana Vavrova-Anderson; Robert H. Brown; Hilary P. Browne; Nicola Corton; Heidi Hauser; John Gamble; Ruth Gilderthorp; Lucio Marcello; Jacqueline McQuillan; Thomas D. Otto; Michael A. Quail; Mandy Sanders; Andries J. van Tonder; Michael L. Ginger; Mark C. Field; J. David Barry; Christiane Hertz-Fowler; Matthew Berriman
Antigenic variation enables pathogens to avoid the host immune response by continual switching of surface proteins. The protozoan blood parasite Trypanosoma brucei causes human African trypanosomiasis (“sleeping sickness”) across sub-Saharan Africa and is a model system for antigenic variation, surviving by periodically replacing a monolayer of variant surface glycoproteins (VSG) that covers its cell surface. We compared the genome of Trypanosoma brucei with two closely related parasites Trypanosoma congolense and Trypanosoma vivax, to reveal how the variant antigen repertoire has evolved and how it might affect contemporary antigenic diversity. We reconstruct VSG diversification showing that Trypanosoma congolense uses variant antigens derived from multiple ancestral VSG lineages, whereas in Trypanosoma brucei VSG have recent origins, and ancestral gene lineages have been repeatedly co-opted to novel functions. These historical differences are reflected in fundamental differences between species in the scale and mechanism of recombination. Using phylogenetic incompatibility as a metric for genetic exchange, we show that the frequency of recombination is comparable between Trypanosoma congolense and Trypanosoma brucei but is much lower in Trypanosoma vivax. Furthermore, in showing that the C-terminal domain of Trypanosoma brucei VSG plays a crucial role in facilitating exchange, we reveal substantial species differences in the mechanism of VSG diversification. Our results demonstrate how past VSG evolution indirectly determines the ability of contemporary parasites to generate novel variant antigens through recombination and suggest that the current model for antigenic variation in Trypanosoma brucei is only one means by which these parasites maintain chronic infections.
Mbio | 2012
Veronica N. Kos; Christopher A. Desjardins; Allison D. Griggs; Gustavo Maia Cerqueira; Andries J. van Tonder; Matthew T. G. Holden; Paul A. Godfrey; Kelli L. Palmer; Kip Bodi; Emmanuel F. Mongodin; Jennifer R. Wortman; Michael Feldgarden; Trevor D. Lawley; Steven R. Gill; Brian J. Haas; Bruce W. Birren; Michael S. Gilmore
ABSTRACT Methicillin-resistant Staphylococcus aureus (MRSA) strains are leading causes of hospital-acquired infections in the United States, and clonal cluster 5 (CC5) is the predominant lineage responsible for these infections. Since 2002, there have been 12 cases of vancomycin-resistant S. aureus (VRSA) infection in the United States—all CC5 strains. To understand this genetic background and what distinguishes it from other lineages, we generated and analyzed high-quality draft genome sequences for all available VRSA strains. Sequence comparisons show unambiguously that each strain independently acquired Tn1546 and that all VRSA strains last shared a common ancestor over 50 years ago, well before the occurrence of vancomycin resistance in this species. In contrast to existing hypotheses on what predisposes this lineage to acquire Tn1546, the barrier posed by restriction systems appears to be intact in most VRSA strains. However, VRSA (and other CC5) strains were found to possess a constellation of traits that appears to be optimized for proliferation in precisely the types of polymicrobic infection where transfer could occur. They lack a bacteriocin operon that would be predicted to limit the occurrence of non-CC5 strains in mixed infection and harbor a cluster of unique superantigens and lipoproteins to confound host immunity. A frameshift in dprA, which in other microbes influences uptake of foreign DNA, may also make this lineage conducive to foreign DNA acquisition. IMPORTANCE Invasive methicillin-resistant Staphylococcus aureus (MRSA) infection now ranks among the leading causes of death in the United States. Vancomycin is a key last-line bactericidal drug for treating these infections. However, since 2002, vancomycin resistance has entered this species. Of the now 12 cases of vancomycin-resistant S. aureus (VRSA), each was believed to represent a new acquisition of the vancomycin-resistant transposon Tn1546 from enterococcal donors. All acquisitions of Tn1546 so far have occurred in MRSA strains of the clonal cluster 5 genetic background, the most common hospital lineage causing hospital-acquired MRSA infection. To understand the nature of these strains, we determined and examined the nucleotide sequences of the genomes of all available VRSA. Genome comparison identified candidate features that position strains of this lineage well for acquiring resistance to antibiotics in mixed infection. Invasive methicillin-resistant Staphylococcus aureus (MRSA) infection now ranks among the leading causes of death in the United States. Vancomycin is a key last-line bactericidal drug for treating these infections. However, since 2002, vancomycin resistance has entered this species. Of the now 12 cases of vancomycin-resistant S. aureus (VRSA), each was believed to represent a new acquisition of the vancomycin-resistant transposon Tn1546 from enterococcal donors. All acquisitions of Tn1546 so far have occurred in MRSA strains of the clonal cluster 5 genetic background, the most common hospital lineage causing hospital-acquired MRSA infection. To understand the nature of these strains, we determined and examined the nucleotide sequences of the genomes of all available VRSA. Genome comparison identified candidate features that position strains of this lineage well for acquiring resistance to antibiotics in mixed infection.
Fems Microbiology Letters | 2011
Simon Heilbronner; Matthew T. G. Holden; Andries J. van Tonder; Joan A. Geoghegan; Timothy J. Foster; Julian Parkhill; Stephen D. Bentley
Staphylococcus lugdunensis is an opportunistic pathogen related to Staphylococcus aureus and Staphylococcus epidermidis. The genome sequence of S. lugdunensis strain N920143 has been compared with other staphylococci, and genes were identified that could promote survival of S. lugdunensis on human skin and pathogenesis of infections. Staphylococcus lugdunensis lacks virulence factors that characterize S. aureus and harbours a smaller number of genes encoding surface proteins. It is the only staphylococcal species other than S. aureus that possesses a locus encoding iron-regulated surface determinant (Isd) proteins involved in iron acquisition from haemoglobin.
Journal of Bacteriology | 2010
Derek Pickard; Ana Luisa Toribio; Nicola K. Petty; Andries J. van Tonder; Lu Yu; David Goulding; Bart Barrell; Richard Rance; David J. Harris; Michael Wetter; John Wain; Jyoti S. Choudhary; Nicholas R. Thomson; Gordon Dougan
A number of bacteriophages have been identified that target the Vi capsular antigen of Salmonella enterica serovar Typhi. Here we show that these Vi phages represent a remarkably diverse set of phages belonging to three phage families, including Podoviridae and Myoviridae. Genome analysis facilitated the further classification of these phages and highlighted aspects of their independent evolution. Significantly, a conserved protein domain carrying an acetyl esterase was found to be associated with at least one tail fiber gene for all Vi phages, and the presence of this domain was confirmed in representative phage particles by mass spectrometric analysis. Thus, we provide a simple explanation and paradigm of how a diverse group of phages target a single key virulence antigen associated with this important human-restricted pathogen.
PLOS Computational Biology | 2014
Andries J. van Tonder; Shilan Mistry; James E. Bray; Dorothea M. C. Hill; Alison J. Cody; Chris L. Farmer; Keith P. Klugman; Anne von Gottberg; Stephen D. Bentley; Julian Parkhill; Keith A. Jolley; Martin C. J. Maiden; Angela B. Brueggemann
The bacterial core genome is of intense interest and the volume of whole genome sequence data in the public domain available to investigate it has increased dramatically. The aim of our study was to develop a model to estimate the bacterial core genome from next-generation whole genome sequencing data and use this model to identify novel genes associated with important biological functions. Five bacterial datasets were analysed, comprising 2096 genomes in total. We developed a Bayesian decision model to estimate the number of core genes, calculated pairwise evolutionary distances (p-distances) based on nucleotide sequence diversity, and plotted the median p-distance for each core gene relative to its genome location. We designed visually-informative genome diagrams to depict areas of interest in genomes. Case studies demonstrated how the model could identify areas for further study, e.g. 25% of the core genes with higher sequence diversity in the Campylobacter jejuni and Neisseria meningitidis genomes encoded hypothetical proteins. The core gene with the highest p-distance value in C. jejuni was annotated in the reference genome as a putative hydrolase, but further work revealed that it shared sequence homology with beta-lactamase/metallo-beta-lactamases (enzymes that provide resistance to a range of broad-spectrum antibiotics) and thioredoxin reductase genes (which reduce oxidative stress and are essential for DNA replication) in other C. jejuni genomes. Our Bayesian model of estimating the core genome is principled, easy to use and can be applied to large genome datasets. This study also highlighted the lack of knowledge currently available for many core genes in bacterial genomes of significant global public health importance.
BMC Genomics | 2013
Kelly L. Wyres; Andries J. van Tonder; Lotte Lambertsen; Regine Hakenbeck; Julian Parkhill; Stephen D. Bentley; Angela B. Brueggemann
BackgroundAntimicrobial resistance among pneumococci has greatly increased over the past two to three decades. Resistance to tetracycline (tet(M)), chloramphenicol (cat) and macrolides (erm(B) and/or mef(A/E)) is generally conferred by acquisition of specific genes that are associated with mobile genetic elements, including those of the Tn916 and Tn5252 families. The first tetracycline-, chloramphenicol- and macrolide-resistant pneumococci were detected between 1962 and 1970; however, until now the oldest pneumococcus shown to harbour Tn916 and/or Tn5252 was isolated in 1974. In this study the genomes of 38 pneumococci isolated prior to 1974 were probed for the presence of tet(M), cat, erm(B), mef(A/E) and int (integrase) to indicate the presence of Tn916/ Tn5252-like elements.ResultsTwo Tn916-like, tet(M)-containing, elements were identified among pneumococci dated 1967 and 1968. The former element was highly similar to that of the PMEN1 multidrug-resistant, globally-distributed pneumococcal reference strain, which was isolated in 1984. The latter element was associated with a streptococcal phage. A third, novel genetic element, designated ICESp PN1, was identified in the genome of an isolate dated 1972. ICESp PN1 contained a region of similarity to Tn5252, a region of similarity to a pneumococcal pathogenicity island and novel lantibiotic synthesis/export-associated genes.ConclusionsThese data confirm the existence of pneumococcal Tn916 elements in the first decade within which pneumococcal tetracycline resistance was described. Furthermore, the discovery of ICESp PN1 demonstrates the dynamic variability of pneumococcal genetic elements and is contrasted with the evidence for Tn916 stability.
BMC Genomics | 2015
Carlijn Bogaardt; Andries J. van Tonder; Angela B. Brueggemann
BackgroundOne of the most important global pathogens infecting all age groups is Streptococcus pneumoniae (the ‘pneumococcus’). Pneumococci reside in the paediatric nasopharynx, where they compete for space and resources, and one competition strategy is to produce a bacteriocin (antimicrobial peptide or protein) to attack other bacteria and an immunity protein to protect against self-destruction. We analysed a collection of 336 diverse pneumococcal genomes dating from 1916 onwards, identified bacteriocin cassettes, detailed their genetic composition and sequence diversity, and evaluated the data in the context of the pneumococcal population structure.ResultsWe found that all genomes maintained a blp bacteriocin cassette and we identified several novel blp cassettes and genes. The composition of the ‘bacteriocin/immunity region’ of the blp cassette was highly variable: one cassette possessed six bacteriocin genes and eight putative immunity genes, whereas another cassette had only one of each. Both widely-distributed and highly clonal blp cassettes were identified. Most surprisingly, one-third of pneumococcal genomes also possessed a cassette encoding a novel circular bacteriocin that we called pneumocyclicin, which shared a similar genetic organisation to well-characterised circular bacteriocin cassettes in other bacterial species. Pneumocyclicin cassettes were mainly of one genetic cluster and largely found among seven major pneumococcal clonal complexes.ConclusionsThese detailed genomic analyses revealed a novel pneumocyclicin cassette and a wide variety of blp bacteriocin cassettes, suggesting that competition in the nasopharynx is a complex biological phenomenon.
Emerging Infectious Diseases | 2012
Fiona R. Strouts; Peter M. Power; Nicholas J. Croucher; Nicola Corton; Andries J. van Tonder; Michael A. Quail; Paul R. Langford; Michael Hudson; Julian Parkhill; J. Simon Kroll; Stephen D. Bentley
Novel adhesions, including trimeric autotransporters, might contribute to virulence.
Journal of Clinical Microbiology | 2015
Andries J. van Tonder; James E. Bray; Lucy Roalfe; Rebecca White; Marta Zancolli; Sigríður J. Quirk; Gunnsteinn Haraldsson; Keith A. Jolley; Martin C. J. Maiden; Stephen D. Bentley; Ásgeir Haraldsson; Helga Erlendsdóttir; Karl G. Kristinsson; David Goldblatt; Angela B. Brueggemann
ABSTRACT The pneumococcus is a leading pathogen infecting children and adults. Safe, effective vaccines exist, and they work by inducing antibodies to the polysaccharide capsule (unique for each serotype) that surrounds the cell; however, current vaccines are limited by the fact that only a few of the nearly 100 antigenically distinct serotypes are included in the formulations. Within the serotypes, serogroup 6 pneumococci are a frequent cause of serious disease and common colonizers of the nasopharynx in children. Serotype 6E was first reported in 2004 but was thought to be rare; however, we and others have detected serotype 6E among recent pneumococcal collections. Therefore, we analyzed a diverse data set of ∼1,000 serogroup 6 genomes, assessed the prevalence and distribution of serotype 6E, analyzed the genetic diversity among serogroup 6 pneumococci, and investigated whether pneumococcal conjugate vaccine-induced serotype 6A and 6B antibodies mediate the killing of serotype 6E pneumococci. We found that 43% of all genomes were of serotype 6E, and they were recovered worldwide from healthy children and patients of all ages with pneumococcal disease. Four genetic lineages, three of which were multidrug resistant, described ∼90% of the serotype 6E pneumococci. Serological assays demonstrated that vaccine-induced serotype 6B antibodies were able to elicit killing of serotype 6E pneumococci. We also revealed three major genetic clusters of serotype 6A capsular sequences, discovered a new hybrid 6C/6E serotype, and identified 44 examples of serotype switching. Therefore, while vaccines appear to offer protection against serotype 6E, genetic variants may reduce vaccine efficacy in the longer term because of the emergence of serotypes that can evade vaccine-induced immunity.