Andrii Boguslavskyi
King's College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrii Boguslavskyi.
The Journal of Physiology | 2015
Michael J. Shattock; Michela Ottolia; Donald M. Bers; Mordecai P. Blaustein; Andrii Boguslavskyi; Julie Bossuyt; John H.B. Bridge; Ye Chen-Izu; Colleen E. Clancy; Andrew G. Edwards; Joshua I. Goldhaber; Jack H. Kaplan; Jerry B. Lingrel; Davor Pavlovic; Kenneth D. Philipson; Karin R. Sipido; Zi Jian Xie
This paper is the third in a series of reviews published in this issue resulting from the University of California Davis Cardiovascular Symposium 2014: Systems approach to understanding cardiac excitation–contraction coupling and arrhythmias: Na+ channel and Na+ transport. The goal of the symposium was to bring together experts in the field to discuss points of consensus and controversy on the topic of sodium in the heart. The present review focuses on cardiac Na+/Ca2+ exchange (NCX) and Na+/K+‐ATPase (NKA). While the relevance of Ca2+ homeostasis in cardiac function has been extensively investigated, the role of Na+ regulation in shaping heart function is often overlooked. Small changes in the cytoplasmic Na+ content have multiple effects on the heart by influencing intracellular Ca2+ and pH levels thereby modulating heart contractility. Therefore it is essential for heart cells to maintain Na+ homeostasis. Among the proteins that accomplish this task are the Na+/Ca2+ exchanger (NCX) and the Na+/K+ pump (NKA). By transporting three Na+ ions into the cytoplasm in exchange for one Ca2+ moved out, NCX is one of the main Na+ influx mechanisms in cardiomyocytes. Acting in the opposite direction, NKA moves Na+ ions from the cytoplasm to the extracellular space against their gradient by utilizing the energy released from ATP hydrolysis. A fine balance between these two processes controls the net amount of intracellular Na+ and aberrations in either of these two systems can have a large impact on cardiac contractility. Due to the relevant role of these two proteins in Na+ homeostasis, the emphasis of this review is on recent developments regarding the cardiac Na+/Ca2+ exchanger (NCX1) and Na+/K+ pump and the controversies that still persist in the field.
Journal of Molecular and Cellular Cardiology | 2013
Davor Pavlovic; Andrew R. Hall; Erika J. Kennington; Karen L. Aughton; Andrii Boguslavskyi; William Fuller; Sanda Despa; Donald M. Bers; Michael J. Shattock
In the heart, Na/K-ATPase regulates intracellular Na+ and Ca2 + (via NCX), thereby preventing Na+ and Ca2 + overload and arrhythmias. Here, we test the hypothesis that nitric oxide (NO) regulates cardiac intracellular Na+ and Ca2 + and investigate mechanisms and physiological consequences involved. Effects of both exogenous NO (via NO-donors) and endogenously synthesized NO (via field-stimulation of ventricular myocytes) were assessed in this study. Field stimulation of rat ventricular myocytes significantly increased endogenous NO (18 ± 2 μM), PKCε activation (82 ± 12%), phospholemman phosphorylation (at Ser-63 and Ser-68) and Na/K-ATPase activity (measured by DAF-FM dye, western-blotting and biochemical assay, respectively; p < 0.05, n = 6) and all were abolished by Ca2 +-chelation (EGTA 10 mM) or NOS inhibition l-NAME (1 mM). Exogenously added NO (spermine-NONO-ate) stimulated Na/K-ATPase (EC50 = 3.8 μM; n = 6/grp), via decrease in Km, in PLMWT but not PLMKO or PLM3SA myocytes (where phospholemman cannot be phosphorylated) as measured by whole-cell perforated-patch clamp. Field-stimulation with l-NAME or PKC-inhibitor (2 μM Bis) resulted in elevated intracellular Na+ (22 ± 1.5 and 24 ± 2 respectively, vs. 14 ± 0.6 mM in controls) in SBFI-AM-loaded rat myocytes. Arrhythmia incidence was significantly increased in rat hearts paced in the presence of l-NAME (and this was reversed by l-arginine), as well as in PLM3SA mouse hearts but not PLMWT and PLMKO. We provide physiological and biochemical evidence for a novel regulatory pathway whereby NO activates Na/K-ATPase via phospholemman phosphorylation and thereby limits Na+ and Ca2 + overload and arrhythmias. This article is part of a Special Issue entitled “Na+ Regulation in Cardiac Myocytes”.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Jacqueline Howie; Louise Reilly; Niall J. Fraser; Julia M. Vlachaki Walker; Krzysztof J. Wypijewski; Michael L.J. Ashford; Sarah Calaghan; Heather McClafferty; Lijun Tian; Michael J. Shipston; Andrii Boguslavskyi; Michael J. Shattock; William Fuller
Significance Dynamic palmitoylation at the cell surface by the acyl transferase DHHC5 regulates a plethora of physiological processes, from endocytosis to synaptic plasticity. Here we report that DHHC5 is abundantly expressed in cell surface caveolar microdomains in cardiac muscle, and that the Na pump regulator phospholemman is a substrate for DHHC5. Palmitoylation of phospholemman C40 by DHHC5 reduces Na pump activity. DHHC5 interacts with phospholemman independent of its PSD-95/Discs-large/ZO-1 homology (PDZ) binding motif, via a region of its intracellular carboxyl tail that has not hitherto been implicated in substrate recognition. This suggests that it may be possible to selectively manipulate DHHC5 activity by blocking the recruitment of specific substrates to the active site by the carboxyl tail. The cardiac phosphoprotein phospholemman (PLM) regulates the cardiac sodium pump, activating the pump when phosphorylated and inhibiting it when palmitoylated. Protein palmitoylation, the reversible attachment of a 16 carbon fatty acid to a cysteine thiol, is catalyzed by the Asp-His-His-Cys (DHHC) motif-containing palmitoyl acyltransferases. The cell surface palmitoyl acyltransferase DHHC5 regulates a growing number of cellular processes, but relatively few DHHC5 substrates have been identified to date. We examined the expression of DHHC isoforms in ventricular muscle and report that DHHC5 is among the most abundantly expressed DHHCs in the heart and localizes to caveolin-enriched cell surface microdomains. DHHC5 coimmunoprecipitates with PLM in ventricular myocytes and transiently transfected cells. Overexpression and silencing experiments indicate that DHHC5 palmitoylates PLM at two juxtamembrane cysteines, C40 and C42, although C40 is the principal palmitoylation site. PLM interaction with and palmitoylation by DHHC5 is independent of the DHHC5 PSD-95/Discs-large/ZO-1 homology (PDZ) binding motif, but requires a ∼120 amino acid region of the DHHC5 intracellular C-tail immediately after the fourth transmembrane domain. PLM C42A but not PLM C40A inhibits the Na pump, indicating PLM palmitoylation at C40 but not C42 is required for PLM-mediated inhibition of pump activity. In conclusion, we demonstrate an enzyme–substrate relationship for DHHC5 and PLM and describe a means of substrate recruitment not hitherto described for this acyltransferase. We propose that PLM palmitoylation by DHHC5 promotes phospholipid interactions that inhibit the Na pump.
Cardiovascular Research | 2014
Andrii Boguslavskyi; Davor Pavlovic; Karen L. Aughton; James E. Clark; Jacqueline Howie; William Fuller; Michael J. Shattock
Aims Elevation of intracellular Na in the failing myocardium contributes to contractile dysfunction, the negative force–frequency relationship, and arrhythmias. Although phospholemman (PLM) is recognized to form the link between signalling pathways and Na/K pump activity, the possibility that defects in its regulation contribute to elevation of intracellular Na has not been investigated. Our aim was to test the hypothesis that the prevention of PLM phosphorylation in a PLM3SA knock-in mouse (in which PLM has been rendered unphosphorylatable) will exacerbate cardiac hypertrophy and cellular Na overload. Testing this hypothesis should determine whether changes in PLM phosphorylation are simply bystander effects or are causally involved in disease progression. Methods and results In wild-type (WT) mice, aortic constriction resulted in hypophosphorylation of PLM with no change in Na/K pump expression. This under-phosphorylation of PLM occurred at 3 days post-banding and was associated with a progressive decline in Na/K pump current and elevation of [Na]i. Echocardiography, morphometry, and pressure-volume (PV) catheterization confirmed remodelling, dilation, and contractile dysfunction, respectively. In PLM3SA mice, expression of Na/K ATPase was increased and PLM decreased such that net Na/K pump current under quiescent conditions was unchanged (cf. WT myocytes); [Na+]i was increased and forward-mode Na/Ca exchanger was reduced in paced PLM3SA myocytes. Cardiac hypertrophy and Na/K pump inhibition were significantly exacerbated in banded PLM3SA mice compared with banded WT. Conclusions Decreased phosphorylation of PLM reduces Na/K pump activity and exacerbates Na overload, contractile dysfunction, and adverse remodelling following aortic constriction in mice. This suggests a novel therapeutic target for the treatment of heart failure.
Nature Communications | 2016
Jenna Scotcher; Oleksandra Prysyazhna; Andrii Boguslavskyi; Kornél Kistamás; Natasha Hadgraft; Eva Denise Martin; Jenny Worthington; Olena Rudyk; Pedro R. Cutillas; Friederike Cuello; Michael J. Shattock; Michael Marber; Maria R. Conte; Adam Greenstein; David J. Greensmith; Luigi Venetucci; John F. Timms; Philip Eaton
The Frank–Starling mechanism allows the amount of blood entering the heart from the veins to be precisely matched with the amount pumped out to the arterial circulation. As the heart fills with blood during diastole, the myocardium is stretched and oxidants are produced. Here we show that protein kinase G Iα (PKGIα) is oxidant-activated during stretch and this form of the kinase selectively phosphorylates cardiac phospholamban Ser16—a site important for diastolic relaxation. We find that hearts of Cys42Ser PKGIα knock-in (KI) mice, which are resistant to PKGIα oxidation, have diastolic dysfunction and a diminished ability to couple ventricular filling with cardiac output on a beat-to-beat basis. Intracellular calcium dynamics of ventricular myocytes isolated from KI hearts are altered in a manner consistent with impaired relaxation and contractile function. We conclude that oxidation of PKGIα during myocardial stretch is crucial for diastolic relaxation and fine-tunes the Frank–Starling response.
Cardiovascular Research | 2018
Asvi Francois; Kofo Obasanjo-Blackshire; James E. Clark; Andrii Boguslavskyi; Mark R. Holt; Peter J. Parker; Michael Marber; Richard J. Heads
Abstract Aims PKN1 is a stress-responsive protein kinase acting downstream of small GTP-binding proteins of the Rho/Rac family. The aim was to determine its role in endogenous cardioprotection. Methods and results Hearts from PKN1 knockout (KO) or wild type (WT) littermate control mice were perfused in Langendorff mode and subjected to global ischaemia and reperfusion (I/R). Myocardial infarct size was doubled in PKN1 KO hearts compared to WT hearts. PKN1 was basally phosphorylated on the activation loop Thr778 PDK1 target site which was unchanged during I/R. However, phosphorylation of p42/p44-MAPK was decreased in KO hearts at baseline and during I/R. In cultured neonatal rat ventricular cardiomyocytes (NRVM) and NRVM transduced with kinase dead (KD) PKN1 K644R mutant subjected to simulated ischaemia/reperfusion (sI/R), PhosTag® gel analysis showed net dephosphorylation of PKN1 during sI and early R despite Thr778 phosphorylation. siRNA knockdown of PKN1 in NRVM significantly decreased cell survival and increased cell injury by sI/R which was reversed by WT- or KD-PKN1 expression. Confocal immunofluorescence analysis of PKN1 in NRVM showed increased localization to the sarcoplasmic reticulum (SR) during sI. GC-MS/MS and immunoblot analysis of PKN1 immunoprecipitates following sI/R confirmed interaction with CamKIIδ. Co-translocation of PKN1 and CamKIIδ to the SR/membrane fraction during sI correlated with phospholamban (PLB) Thr17 phosphorylation. siRNA knockdown of PKN1 in NRVM resulted in increased basal CamKIIδ activation and increased PLB Thr17 phosphorylation only during sI. In vivo PLB Thr17 phosphorylation, Sarco-Endoplasmic Reticulum Ca2+ ATPase (SERCA2) expression and Junctophilin-2 (Jph2) expression were also basally increased in PKN1 KO hearts. Furthermore, in vivo P-V loop analysis of the beat-to-beat relationship between rate of LV pressure development or relaxation and end diastolic P (EDP) showed mild but significant systolic and diastolic dysfunction with preserved ejection fraction in PKN1 KO hearts. Conclusion Loss of PKN1 in vivo significantly reduces endogenous cardioprotection and increases myocardial infarct size following I/R injury. Cardioprotection by PKN1 is associated with reduced CamKIIδ-dependent PLB Thr17 phosphorylation at the SR and therefore may stabilize the coupling of SR Ca2+ handling and contractile function, independent of its kinase activity.
Basic Research in Cardiology | 2017
Olga Eleftheriadou; Andrii Boguslavskyi; Michael R. Longman; Jonathan Cowan; Asvi Francois; Richard J. Heads; Brian E. Wadzinski; Ali Ryan; Michael J. Shattock; Andrew K. Snabaitis
Biophysical Journal | 2014
Andrii Boguslavskyi; William Fuller; Michael J. Shattock
Artery Research | 2017
Luca Faconti; Bushra Farukh; Andrii Boguslavskyi; Phil Chowienczyk
Free Radical Biology and Medicine | 2016
Oleksandra Prysyazhna; Jenna Scotcher; Andrii Boguslavskyi; Kornél Kistamás; Natasha Hadgraft; Eva Denise Martin; Jenny Worthington; Olena Rudyk; Pedro R. Cutillas; Friederike Cuello; Michael J. Shattock; Michael Marber; Maria R. Conte; Adam Greenstein; David J. Greensmith; Luigi Venetucci; John F. Timms; Philip Eaton