Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andris Gulans is active.

Publication


Featured researches published by Andris Gulans.


Physical Review Letters | 2012

Van der Waals bonding in layered compounds from advanced density-functional first-principles calculations

Torbjörn Björkman; Andris Gulans; Arkady V. Krasheninnikov; Risto M. Nieminen

Although the precise microscopic knowledge of van der Waals interactions is crucial for understanding bonding in weakly bonded layered compounds, very little quantitative information on the strength of interlayer interaction in these materials is available, either from experiments or simulations. Here, using many-body perturbation and advanced density-functional theory techniques, we calculate the interlayer binding and exfoliation energies for a large number of layered compounds and show that, independent of the electronic structure of the material, the energies for most systems are around 20u2009u2009meV/Å2. This universality explains the successful exfoliation of a wide class of layered materials to produce two-dimensional systems, and furthers our understanding the properties of layered compounds in general.


Science | 2016

Reproducibility in density functional theory calculations of solids

Kurt Lejaeghere; Gustav Bihlmayer; Torbjörn Björkman; Peter Blaha; Stefan Blügel; Volker Blum; Damien Caliste; Ivano Eligio Castelli; Stewart J. Clark; Andrea Dal Corso; Stefano de Gironcoli; Thierry Deutsch; J. K. Dewhurst; Igor Di Marco; Claudia Draxl; Marcin Dulak; Olle Eriksson; José A. Flores-Livas; Kevin F. Garrity; Luigi Genovese; Paolo Giannozzi; Matteo Giantomassi; Stefan Goedecker; Xavier Gonze; Oscar Grånäs; E. K. U. Gross; Andris Gulans; Francois Gygi; D. R. Hamann; Phil Hasnip

A comparison of DFT methods Density functional theory (DFT) is now routinely used for simulating material properties. Many software packages are available, which makes it challenging to know which are the best to use for a specific calculation. Lejaeghere et al. compared the calculated values for the equation of states for 71 elemental crystals from 15 different widely used DFT codes employing 40 different potentials (see the Perspective by Skylaris). Although there were variations in the calculated values, most recent codes and methods converged toward a single value, with errors comparable to those of experiment. Science, this issue p. 10.1126/science.aad3000; see also p. 1394 A survey of recent density functional theory methods shows a convergence to more accurate property calculations. [Also see Perspective by Skylaris] INTRODUCTION The reproducibility of results is one of the underlying principles of science. An observation can only be accepted by the scientific community when it can be confirmed by independent studies. However, reproducibility does not come easily. Recent works have painfully exposed cases where previous conclusions were not upheld. The scrutiny of the scientific community has also turned to research involving computer programs, finding that reproducibility depends more strongly on implementation than commonly thought. These problems are especially relevant for property predictions of crystals and molecules, which hinge on precise computer implementations of the governing equation of quantum physics. RATIONALE This work focuses on density functional theory (DFT), a particularly popular quantum method for both academic and industrial applications. More than 15,000 DFT papers are published each year, and DFT is now increasingly used in an automated fashion to build large databases or apply multiscale techniques with limited human supervision. Therefore, the reproducibility of DFT results underlies the scientific credibility of a substantial fraction of current work in the natural and engineering sciences. A plethora of DFT computer codes are available, many of them differing considerably in their details of implementation, and each yielding a certain “precision” relative to other codes. How is one to decide for more than a few simple cases which code predicts the correct result, and which does not? We devised a procedure to assess the precision of DFT methods and used this to demonstrate reproducibility among many of the most widely used DFT codes. The essential part of this assessment is a pairwise comparison of a wide range of methods with respect to their predictions of the equations of state of the elemental crystals. This effort required the combined expertise of a large group of code developers and expert users. RESULTS We calculated equation-of-state data for four classes of DFT implementations, totaling 40 methods. Most codes agree very well, with pairwise differences that are comparable to those between different high-precision experiments. Even in the case of pseudization approaches, which largely depend on the atomic potentials used, a similar precision can be obtained as when using the full potential. The remaining deviations are due to subtle effects, such as specific numerical implementations or the treatment of relativistic terms. CONCLUSION Our work demonstrates that the precision of DFT implementations can be determined, even in the absence of one absolute reference code. Although this was not the case 5 to 10 years ago, most of the commonly used codes and methods are now found to predict essentially identical results. The established precision of DFT codes not only ensures the reproducibility of DFT predictions but also puts several past and future developments on a firmer footing. Any newly developed methodology can now be tested against the benchmark to verify whether it reaches the same level of precision. New DFT applications can be shown to have used a sufficiently precise method. Moreover, high-precision DFT calculations are essential for developing improvements to DFT methodology, such as new density functionals, which may further increase the predictive power of the simulations. Recent DFT methods yield reproducible results. Whereas older DFT implementations predict different values (red darts), codes have now evolved to mutual agreement (green darts). The scoreboard illustrates the good pairwise agreement of four classes of DFT implementations (horizontal direction) with all-electron results (vertical direction). Each number reflects the average difference between the equations of state for a given pair of methods, with the green-to-red color scheme showing the range from the best to the poorest agreement. The widespread popularity of density functional theory has given rise to an extensive range of dedicated codes for predicting molecular and crystalline properties. However, each code implements the formalism in a different way, raising questions about the reproducibility of such predictions. We report the results of a community-wide effort that compared 15 solid-state codes, using 40 different potentials or basis set types, to assess the quality of the Perdew-Burke-Ernzerhof equations of state for 71 elemental crystals. We conclude that predictions from recent codes and pseudopotentials agree very well, with pairwise differences that are comparable to those between different high-precision experiments. Older methods, however, have less precise agreement. Our benchmark provides a framework for users and developers to document the precision of new applications and methodological improvements.


Journal of Physics: Condensed Matter | 2014

exciting: a full-potential all-electron package implementing density-functional theory and many-body perturbation theory

Andris Gulans; Stefan Kontur; Christian Meisenbichler; Dmitrii Nabok; Pasquale Pavone; Santiago Rigamonti; Stephan Sagmeister; Ute Werner; Claudia Draxl

Linearized augmented planewave methods are known as the most precise numerical schemes for solving the Kohn-Sham equations of density-functional theory (DFT). In this review, we describe how this method is realized in the all-electron full-potential computer package, exciting. We emphasize the variety of different related basis sets, subsumed as (linearized) augmented planewave plus local orbital methods, discussing their pros and cons and we show that extremely high accuracy (microhartrees) can be achieved if the basis is chosen carefully. As the name of the code suggests, exciting is not restricted to ground-state calculations, but has a major focus on excited-state properties. It includes time-dependent DFT in the linear-response regime with various static and dynamical exchange-correlation kernels. These are preferably used to compute optical and electron-loss spectra for metals, molecules and semiconductors with weak electron-hole interactions. exciting makes use of many-body perturbation theory for charged and neutral excitations. To obtain the quasi-particle band structure, the GW approach is implemented in the single-shot approximation, known as G(0)W(0). Optical absorption spectra for valence and core excitations are handled by the solution of the Bethe-Salpeter equation, which allows for the description of strongly bound excitons. Besides these aspects concerning methodology, we demonstrate the broad range of possible applications by prototypical examples, comprising elastic properties, phonons, thermal-expansion coefficients, dielectric tensors and loss functions, magneto-optical Kerr effect, core-level spectra and more.


Physical Review B | 2010

Adsorption structures of phenol on the Si(001)-(2X1) surface calculated using density functional theory

Karen Johnston; Andris Gulans; Tuukka Verho; Martti J. Puska

Several dissociated and two nondissociated adsorption structures of the phenol molecule on the Si(001)-(2X1) surface are studied using density functional theory with various exchange and correlation functionals. The relaxed structures and adsorption energies are obtained and it is found that the dissociated structures are energetically more favorable than the nondissociated structures. However, the ground state energies alone do not determine which structure is obtained experimentally. To elucidate the situation core level shift spectra for Si 2p and C 1s states are simulated and compared with experimentally measured spectra. Several transition barriers were calculated in order to determine, which adsorption structures are kinetically accessible. Based on these results we conclude that the molecule undergoes the dissociation of two hydrogen atoms on adsorption.


Physical Review B | 2016

Accurate all-electronG0W0quasiparticle energies employing the full-potential augmented plane-wave method

Dmitrii Nabok; Andris Gulans; Claudia Draxl

The


Journal of Chemical Theory and Computation | 2018

The LDA-1/2 Method Applied to Atoms and Molecules

Ronaldo RodriguesPela; Andris Gulans; Claudia Draxl

GW


Computer Physics Communications | 2017

The LDA-1/2 method implemented in the exciting code

Ronaldo Rodrigues Pela; Andris Gulans; Claudia Draxl

approach of many-body perturbation theory has become a common tool for calculating the electronic structure of materials. However, with increasing number of published results, discrepancies between the values obtained by different methods and codes become more and more apparent. For a test set of small- and wide-gap semiconductors, we demonstrate how to reach the numerically best electronic structure within the framework of the full-potential linearized augmented plane-wave (FLAPW) method. We first evaluate the impact of local orbitals in the Kohn-Sham eigenvalue spectrum of the underlying starting point. The role of the basis-set quality is then further analyzed when calculating the


Physical Review B | 2009

Linear-scaling self-consistent implementation of the van der Waals density functional,

Andris Gulans; Martti J. Puska; Risto M. Nieminen

{G}_{0}{W}_{0}


Physical Review B | 2013

Electronic structure of boron nitride sheets doped with carbon from first-principles calculations

Natalia Berseneva; Andris Gulans; Arkady V. Krasheninnikov; Risto M. Nieminen

quasiparticle energies. Our results, computed with the exciting code, are compared to those obtained using the projector-augmented plane-wave formalism, finding overall good agreement between both methods. We also provide data produced with a typical FLAPW basis set as a benchmark for other


Physical Review B | 2009

Role of van der Waals forces in the adsorption and diffusion of organic molecules on an insulating surface

Olli H. Pakarinen; Jeffrey M. Mativetsky; Andris Gulans; Martti J. Puska; Adam S. Foster; Peter Grutter

{G}_{0}{W}_{0}

Collaboration


Dive into the Andris Gulans's collaboration.

Top Co-Authors

Avatar

Claudia Draxl

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Dmitrii Nabok

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Martti J. Puska

Helsinki University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arkady V. Krasheninnikov

Helmholtz-Zentrum Dresden-Rossendorf

View shared research outputs
Top Co-Authors

Avatar

Caterina Cocchi

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge