Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrius Baltuska is active.

Publication


Featured researches published by Andrius Baltuska.


Nature | 2003

Attosecond control of electronic processes by intense light fields.

Andrius Baltuska; Th. Udem; M. Uiberacker; M. Hentschel; E. Goulielmakis; Ch. Gohle; R. Holzwarth; Vladislav S. Yakovlev; Armin Scrinzi; T. W. Hänsch; Ferenc Krausz

The amplitude and frequency of laser light can be routinely measured and controlled on a femtosecond (10-15 s) timescale. However, in pulses comprising just a few wave cycles, the amplitude envelope and carrier frequency are not sufficient to characterize and control laser radiation, because evolution of the light field is also influenced by a shift of the carrier wave with respect to the pulse peak. This so-called carrier-envelope phase has been predicted and observed to affect strong-field phenomena, but random shot-to-shot shifts have prevented the reproducible guiding of atomic processes using the electric field of light. Here we report the generation of intense, few-cycle laser pulses with a stable carrier envelope phase that permit the triggering and steering of microscopic motion with an ultimate precision limited only by quantum mechanical uncertainty. Using these reproducible light waveforms, we create light-induced atomic currents in ionized matter; the motion of the electronic wave packets can be controlled on timescales shorter than 250 attoseconds (250 × 10-18 s). This enables us to control the attosecond temporal structure of coherent soft X-ray emission produced by the atomic currents—these X-ray photons provide a sensitive and intuitive tool for determining the carrier-envelope phase.


Science | 2012

Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers.

Tenio Popmintchev; Ming-Chang Chen; Dimitar Popmintchev; Paul Arpin; Susannah Brown; S. Ališauskas; Giedrius Andriukaitis; Tadas Balciunas; Oliver D. Mücke; Audrius Pugzlys; Andrius Baltuska; Bonggu Shim; Samuel E. Schrauth; Alexander L. Gaeta; Carlos Hernandez-Garcia; Luis Plaja; Andreas Becker; Agnieszka Jaron-Becker; Margaret M. Murnane; Henry C. Kapteyn

From Long to Short When you play a string instrument, you raise the frequency, or pitch, of the note by shortening the vibrating portion of the string: Drop the length in half, and you hear a harmonic at double the frequency. It is possible to do essentially the same thing with light waves by using selective excitation and relaxation processes of the electrons in crystals or high-pressure gases through which the beam of light is directed to produce light harmonics. Over the past decade, researchers have been optimizing the conversion of red light to the far edge of the ultraviolet, which corresponds to tens of harmonics. Popmintchev et al. (p. 1287) now show that mid-infrared light can undergo a process in high-pressure gas to generate ultrahigh harmonics up to orders greater than 5000 in the x-ray regime. An electron excitation process in a high-pressure gas converts infrared light into a well-confined beam of x-rays. High-harmonic generation (HHG) traditionally combines ~100 near-infrared laser photons to generate bright, phase-matched, extreme ultraviolet beams when the emission from many atoms adds constructively. Here, we show that by guiding a mid-infrared femtosecond laser in a high-pressure gas, ultrahigh harmonics can be generated, up to orders greater than 5000, that emerge as a bright supercontinuum that spans the entire electromagnetic spectrum from the ultraviolet to more than 1.6 kilo–electron volts, allowing, in principle, the generation of pulses as short as 2.5 attoseconds. The multiatmosphere gas pressures required for bright, phase-matched emission also support laser beam self-confinement, further enhancing the x-ray yield. Finally, the x-ray beam exhibits high spatial coherence, even though at high gas density the recolliding electrons responsible for HHG encounter other atoms during the emission process.


Optics Letters | 2011

90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier

Giedrius Andriukaitis; Tadas Balčiūnas; S. Ališauskas; A. Pugžlys; Andrius Baltuska; Tenio Popmintchev; Ming-Chang Chen; Margaret M. Murnane; Henry C. Kapteyn

We demonstrate a compact 20 Hz repetition-rate mid-IR OPCPA system operating at a central wavelength of 3900 nm with the tail-to-tail spectrum extending over 600 nm and delivering 8 mJ pulses that are compressed to 83 fs (<7 optical cycles). Because of the long optical period (∼13 fs) and a high peak power, the system opens a range of unprecedented opportunities for tabletop ultrafast science and is particularly attractive as a driver for a highly efficient generation of ultrafast coherent x-ray continua for biomolecular and element specific imaging.


Optics Letters | 2009

Self-compression of millijoule 1.5 μm pulses

Oliver D. Mücke; S. Ališauskas; Aart J. Verhoef; A. Pugžlys; Andrius Baltuska; V. Smilgevicius; Jonas Pocius; Linas Giniūnas; R. Danielius; Nicolas Forget

We demonstrate a four-stage optical parametric chirped-pulse amplification system that delivers carrier-envelope phase-stable approximately 1.5 microm pulses with energies up to 12.5 mJ before recompression. The system is based on a fusion of femtosecond diode-pumped solid-state Yb technology and a picosecond 100 mJ Nd:YAG pump laser. Pulses with 62 nm bandwidth are recompressed to a 74.4 fs duration close to the transform limit. To show the way toward a terawatt-peak-power single-cycle IR source, we demonstrate self-compression of 2.2 mJ pulses down to 19.8 fs duration in a single filament in argon with a 1.5 mJ output energy and 66% energy throughput.


Nature Communications | 2015

A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre

Tadas Balciunas; Coralie Fourcade-Dutin; Guangyu Fan; Tobias Witting; A. A. Voronin; Aleksei M. Zheltikov; Frédéric Gérôme; G. G. Paulus; Andrius Baltuska; Fetah Benabid

Over the past decade intense laser fields with a single-cycle duration and even shorter, subcycle multicolour field transients have been generated and applied to drive attosecond phenomena in strong-field physics. Because of their extensive bandwidth, single-cycle fields cannot be emitted or amplified by laser sources directly and, as a rule, are produced by external pulse compression—a combination of nonlinear optical spectral broadening followed up by dispersion compensation. Here we demonstrate a simple robust driver for high-field applications based on this Kagome fibre approach that ensures pulse self-compression down to the ultimate single-cycle limit and provides phase-controlled pulses with up to a 100 μJ energy level, depending on the filling gas, pressure and the waveguide length.


Optics Letters | 2002

Self-referencing of the carrier-envelope slip in a 6-fs visible parametric amplifier.

Andrius Baltuska; Takao Fuji; Takayoshi Kobayashi

We demonstrate a scheme for parametric amplification that allows us to measure the drift of the carrier-envelope phase of the output signal pulses. The method is based on the unique double phase-matching properties of a noncollinearly pumped BBO crystal, making possible the detection of the interference between the signal and the frequency-doubled idler. Additionally, the suggested device greatly simplifies the single-shot measurement of the phase evolution in Ti:sapphire laser amplifiers by dispensing with harmonic synthesis from the spectral edges of an octave-wide supercontinuum.


Physical Review Letters | 2012

Attosecond-recollision-controlled selective fragmentation of polyatomic molecules.

Xinhua Xie; Katharina Doblhoff-Dier; Stefan Roither; M. Schöffler; Daniil Kartashov; Huailiang Xu; Tim Rathje; G. G. Paulus; Andrius Baltuska; Stefanie Gräfe; Markus Kitzler

Control over various fragmentation reactions of a series of polyatomic molecules (acetylene, ethylene, 1,3-butadiene) by the optical waveform of intense few-cycle laser pulses is demonstrated experimentally. We show both experimentally and theoretically that the responsible mechanism is inelastic ionization from inner-valence molecular orbitals by recolliding electron wave packets, whose recollision energy in few-cycle ionizing laser pulses strongly depends on the optical waveform. Our work demonstrates an efficient and selective way of predetermining fragmentation and isomerization reactions in polyatomic molecules on subfemtosecond time scales.


Scientific Reports | 2015

Mid-infrared laser filaments in the atmosphere

A. V. Mitrofanov; A. A. Voronin; D. A. Sidorov-Biryukov; A. Pugžlys; E. A. Stepanov; Giedrius Andriukaitis; Tobias Flöry; S. Ališauskas; A. B. Fedotov; Andrius Baltuska; Aleksei M. Zheltikov

Filamentation of ultrashort laser pulses in the atmosphere offers unique opportunities for long-range transmission of high-power laser radiation and standoff detection. With the critical power of self-focusing scaling as the laser wavelength squared, the quest for longer-wavelength drivers, which would radically increase the peak power and, hence, the laser energy in a single filament, has been ongoing over two decades, during which time the available laser sources limited filamentation experiments in the atmosphere to the near-infrared and visible ranges. Here, we demonstrate filamentation of ultrashort mid-infrared pulses in the atmosphere for the first time. We show that, with the spectrum of a femtosecond laser driver centered at 3.9 μm, right at the edge of the atmospheric transmission window, radiation energies above 20 mJ and peak powers in excess of 200 GW can be transmitted through the atmosphere in a single filament. Our studies reveal unique properties of mid-infrared filaments, where the generation of powerful mid-infrared supercontinuum is accompanied by unusual scenarios of optical harmonic generation, giving rise to remarkably broad radiation spectra, stretching from the visible to the mid-infrared.


Optics Letters | 2013

High energy and average power femtosecond laser for driving mid-infrared optical parametric amplifiers

Pavel Malevich; Giedrius Andriukaitis; Tobias Flöry; A. J. Verhoef; Alma Fernandez; S. Ališauskas; A. Pugžlys; Andrius Baltuska; L. H. Tan; C. F. Chua; P. B. Phua

We have developed the first (to our knowledge) femtosecond Tm-fiber-laser-pumped Ho:YAG room-temperature chirped pulse amplifier system delivering scalable multimillijoule, multikilohertz pulses with a bandwidth exceeding 12 nm and average power of 15 W. The recompressed 530 fs pulses are suitable for broadband white light generation in transparent solids, which makes the developed source ideal for both pumping and seeding optical parametric amplifiers operating in the mid-IR spectral range.


Optics Letters | 2012

White light generation over three octaves by femtosecond filament at 3.9 µm in argon

Daniil Kartashov; S. Ališauskas; A. Pugžlys; Alexander Voronin; Aleksei M. Zheltikov; Massimo Petrarca; Pierre Olivier Bejot; Jérôme Kasparian; Jean-Pierre Wolf; Andrius Baltuska

We report the first (to our knowledge) experimental results and numerical simulations on mid-IR femtosecond pulse filamentation in argon using 0.1 TW peak-power, 80 fs, 3.9 μm pulses. A broadband supercontinuum spanning the spectral range from 350 nm to 5 μm is generated, whereby about 4% of the mid-IR pulse energy is converted into the 350-1700 nm spectral region. These mid-IR-visible coherent continua offer a new, unique tool for time-resolved spectroscopy based on a mid-IR filamentation laser source.

Collaboration


Dive into the Andrius Baltuska's collaboration.

Top Co-Authors

Avatar

Audrius Pugzlys

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus Kitzler

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

S. Ališauskas

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Giedrius Andriukaitis

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Xinhua Xie

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Stefan Roither

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Tadas Balciunas

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Pugžlys

Vienna University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge