Andrius Pašukonis
University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrius Pašukonis.
Nature Communications | 2014
Jorg J. M. Massen; Andrius Pašukonis; Judith Schmidt; Thomas Bugnyar
A core feature of social intelligence is the understanding of third-party relations, which has been experimentally demonstrated in primates. Whether other social animals also have this capacity, and whether they can use this capacity flexibly to, for example, also assess the relations of neighbouring conspecifics, remains unknown. Here we show that ravens react differently to playbacks of dominance interactions that either confirm or violate the current rank hierarchy of members in their own social group and of ravens in a neighbouring group. Therefore, ravens understand third-party relations and may deduce those not only via physical interactions but also by observation.
Frontiers in Zoology | 2013
Eva Ringler; Andrius Pašukonis; Walter Hödl; Max Ringler
IntroductionIndividuals should aim to adjust their parental behaviours in order to maximize the success of their offspring but minimize associated costs. Plasticity in parental care is well documented from various bird, mammal and fish species, whereas amphibians were traditionally assumed as being highly instinct-bound. Therefore, little is known about ‘higher’ cognitive abilities of amphibians, such as strategic planning and behavioural flexibility. Dendrobatid frogs have evolved a remarkable diversity of parental behaviours. The most noticeable of these behaviours is tadpole transport, which is obligatory in almost all species. Nonetheless, there is limited knowledge about spatial and temporal patterns of tadpole transport and the possible existence of behavioural plasticity on the individual level. In this study, we investigated correlates of tadpole transport behaviour in a natural population of the dendrobatid frog Allobates femoralis during five years.ResultsTadpole transport was predominantly observed during morning hours. Although tadpoles were carried almost exclusively by males (N = 119), we also observed ten females performing this task. The parentage analysis revealed that in all cases females transported their own offspring. In contrast, four tadpole-carrying males were not the genetic fathers of the larvae they were transporting. The average clutch size of 20 eggs and our observation of an average of 8 tadpoles on the back of transporting individuals indicate that frogs do not carry entire clutches at once, and/or that they distribute their larvae across several water bodies. Contrary to the predictions from a hypothetical random search for deposition sites, the number of transported tadpoles was higher in males that travelled over longer distances.ConclusionsOur results suggest a strong selective pressure on males to shift the time invested in tadpole transport to periods of low intra-specific competition. The number of tadpoles on the back of the males significantly correlated with displacement distance from the respective home territories, indicating a strategic non-random tadpole transport rather than random search for suitable tadpole deposition sites during tadpole transport. The observation of females who occasionally transported larvae supports the prevalence of adaptive plasticity in parental behaviours even in a species with a rather low level of parental care.
Behavioral Ecology | 2015
Eva Ringler; Andrius Pašukonis; W. Tecumseh Fitch; Ludwig Huber; Walter Hödl; Max Ringler
Lay Summary Caring mothers step in for deadbeat dads. Flexible compensation has evolved as a countermeasure against reduced or lost parental care and is commonly found in biparental species. In the poison frog Allobates femoralis with obligatory male-only care, we show that females flexibly perform tadpole transport when males disappear. This demonstrates that compensatory flexibility also evolved in species with unisexual care, suggesting that parental care systems are more flexible than previously thought.
Ethology | 2013
Andrius Pašukonis; Max Ringler; Hanja B. Brandl; Rosanna Mangione; Eva Ringler; Walter Hödl
Dendrobatidae (dart-poison frogs) exhibit some of the most complex spatial behaviors among amphibians, such as territoriality and tadpole transport from terrestrial clutches to widely distributed deposition sites. In species that exhibit long-term territoriality, high homing performance after tadpole transport can be assumed, but experimental evidence is lacking, and the underlying orientation mechanisms are unknown. We conducted a field translocation experiment to test whether male Allobates femoralis, a dendrobatid frog with paternal extra-territorial tadpole transport, are capable of homing after experimental removal, as well as to quantify homing success and speed. Translocated individuals showed a very high homing success for distances up to 200 m and successfully returned from up to 400 m. We discuss the potential orientation mechanisms involved and selective forces that could have shaped this strong homing ability.
Animal Behaviour | 2016
Andrius Pašukonis; Katharina Trenkwalder; Max Ringler; Eva Ringler; Rosanna Mangione; Jolanda Steininger; Ian Warrington; Walter Hödl
The ability to associate environmental cues with valuable resources strongly increases the chances of finding them again, and thus memory often guides animal movement. For example, many temperate region amphibians show strong breeding site fidelity and will return to the same areas even after the ponds have been destroyed. In contrast, many tropical amphibians depend on exploitation of small, scattered and fluctuating resources such as ephemeral pools for reproduction. It remains unknown whether tropical amphibians rely on spatial memory for effective exploitation of their reproductive resources. Poison frogs (Dendrobatidae) routinely shuttle their tadpoles from terrestrial clutches to dispersed aquatic deposition sites. We investigated the role of spatial memory for relocating previously discovered deposition sites in an experimental population of the brilliant-thighed poison frog, Allobates femoralis, a species with predominantly male tadpole transport. We temporarily removed an array of artificial pools that served as the principal tadpole deposition resource for the population. In parallel, we set up an array of sham sites and sites containing conspecific tadpole odour cues. We then quantified the movement patterns and site preferences of tadpole-transporting males by intensive sampling of the area and tracking individual frogs. We found that tadpole-carrier movements were concentrated around the exact locations of removed pools and most individuals visited several removed pool sites. In addition, we found that tadpole-transporting frogs were attracted to novel sites that contained high concentrations of conspecific olfactory tadpole cues. Our results suggest that A. femoralis males rely heavily on spatial memory for efficient exploitation of multiple, widely dispersed deposition sites once they are discovered. Additionally, olfactory cues may facilitate the initial discovery of the new sites.
Journal of Maps | 2014
Max Ringler; Rosanna Mangione; Andrius Pašukonis; Gerhard Rainer; Kristin Gyimesi; Julia Felling; Hannes Kronaus; Maxime Réjou-Méchain; Jérôme Chave; Karl Reiter; Eva Ringler
For animals with spatially complex behaviours at relatively small scales, the resolution of a global positioning system (GPS) receiver location is often below the resolution needed to correctly map animals’ spatial behaviour. Natural conditions such as canopy cover, canyons or clouds can further degrade GPS receiver reception. Here we present a detailed, high-resolution map of a 4.6 ha Neotropical river island and a 8.3 ha mainland plot with the location of every tree >5 cm DBH and all structures on the forest floor, which are relevant to our study species, the territorial frog Allobates femoralis (Dendrobatidae). The map was derived using distance- and compass-based survey techniques, rooted on dGPS reference points, and incorporates altitudinal information based on a LiDAR survey of the area.
PeerJ | 2017
Kristina Barbara Beck; Matthias-Claudio Loretto; Max Ringler; Walter Hödl; Andrius Pašukonis
Animals relying on uncertain, ephemeral and patchy resources have to regularly update their information about profitable sites. For many tropical amphibians, widespread, scattered breeding pools constitute such fluctuating resources. Among tropical amphibians, poison frogs (Dendrobatidae) exhibit some of the most complex spatial and parental behaviors—including territoriality and tadpole transport from terrestrial clutches to ephemeral aquatic deposition sites. Recent studies have revealed that poison frogs rely on spatial memory to successfully navigate through their environment. This raises the question of when and how these frogs gain information about the area and suitable reproductive resources. To investigate the spatial patterns of pool use and to reveal potential explorative behavior, we used telemetry to follow males of the territorial dendrobatid frog Allobates femoralis during tadpole transport and subsequent homing. To elicit exploration, we reduced resource availability experimentally by simulating desiccated deposition sites. We found that tadpole transport is strongly directed towards known deposition sites and that frogs take similar direct paths when returning to their home territory. Frogs move faster during tadpole transport than when homing after the deposition, which probably reflects different risks and costs during these two movement phases. We found no evidence for exploration, neither during transport nor homing, and independent of the availability of deposition sites. We suggest that prospecting during tadpole transport is too risky for the transported offspring as well as for the transporting male. Relying on spatial memory of multiple previously discovered pools appears to be the predominant and successful strategy for the exploitation of reproductive resources in A. femoralis. Our study provides for the first time a detailed description of poison frog movement patterns during tadpole transport and corroborates recent findings on the significance of spatial memory in poison frogs. When these frogs explore and discover new reproductive resources remains unknown.
The Journal of Experimental Biology | 2017
Andrius Pašukonis; Kristina Barbara Beck; Marie-Therese Fischer; Steffen Weinlein; Susanne Stückler; Eva Ringler
ABSTRACT Understanding the external stimuli and natural contexts that elicit complex behaviours, such as parental care, is key in linking behavioural mechanisms to their real-life function. Poison frogs provide obligate parental care by shuttling their tadpoles from terrestrial clutches to aquatic nurseries, but little is known about the proximate mechanisms that control these behaviours. In this study, we used Allobates femoralis, a poison frog with predominantly male parental care, to investigate whether tadpole transport can be induced in both sexes by transferring unrelated tadpoles to the backs of adults in the field. Specifically, we asked whether the presence of tadpoles on an adults back can override the decision-making rules preceding tadpole pick-up and induce the recall of spatial memory necessary for finding tadpole deposition sites. We used telemetry to facilitate accurate tracking of individual frogs and spatial analysis to compare movement trajectories. All tested individuals transported their foster-tadpoles to water pools outside their home area. Contrary to our expectation, we found no sex difference in the likelihood to transport or in the spatial accuracy of finding tadpole deposition sites. We reveal that a stereotypical cascade of parental behaviours that naturally involves sex-specific offspring recognition strategies and the use of spatial memory can be manipulated by experimental placement of unrelated tadpoles on adult frogs. As individuals remained inside their home area when only the jelly from tadpole-containing clutches was brushed on the back, we speculate that tactile rather than chemical stimuli trigger these parental behaviours. Summary: Placement of unrelated tadpoles on adult poison frogs triggers a cascade of parental behaviours involving tadpole transport and spatial memory use in both sexes, despite the asymmetric parental sex roles.
Behavioural Processes | 2016
Alexandru Munteanu; Iris Starnberger; Andrius Pašukonis; Thomas Bugnyar; Walter Hödl; William Tecumseh Fitch
Detour behaviour, an individual’s ability to reach its goal by taking an indirect route, has been used to test spatial cognitive abilities across a variety of taxa. Although many amphibians show a strong homing ability, there is currently little evidence of amphibian spatial cognitive flexibility. We tested whether a territorial frog, Allobates femoralis, can flexibly adjust its homing path when faced with an obstacle. We displaced male frogs from their calling sites into the centre of circular arenas and recorded their escape routes. In the first experiment we provided an arena with equally high walls. In the second experiment we doubled the height of the homeward facing wall. Finally, we provided a tube as a shortcut through the high wall. In the equal-height arena, most frogs chose to escape via the quadrant facing their former calling site. However, when challenged with different heights, nearly all frogs chose the low wall, directing their movements away from the calling site. In the “escape tunnel” experiment most frogs still chose the low wall. Our results show that displaced A. femoralis males can flexibly adjust their homing path and avoid (presumably energetically costly) obstacles, providing experimental evidence of spatial cognitive flexibility in an amphibian.
The Journal of Experimental Biology | 2018
Andrius Pašukonis; Matthias-Claudio Loretto; Walter Hödl
ABSTRACT Most animals move in dense habitats where distant landmarks are limited, but how they find their way around remains poorly understood. Poison frogs inhabit the rainforest understory, where they shuttle tadpoles from small territories to widespread pools. Recent studies revealed their excellent spatial memory and the ability to home back from several hundred meters. It remains unclear whether this homing ability is restricted to the areas that had been previously explored or whether it allows the frogs to navigate from areas outside their direct experience. Here, we used radio-tracking to study the navigational performance of three-striped poison frog translocated outside the area of their routine movements (200–800 m). Translocated frogs returned to their home territory via a direct path from all distances and with little difference in orientation accuracy, suggesting a flexible map-like navigation mechanism. These findings challenge our current understanding of both the mechanisms and the sensory basis of amphibian orientation. Summary: Three-striped poison frogs (Ameerega trivittata) can navigate home via a direct path from areas exceeding the range of their routine movements.