Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andriy Kovalchuk is active.

Publication


Featured researches published by Andriy Kovalchuk.


BMC Genomics | 2010

Phylogenetic analysis of fungal ABC transporters

Andriy Kovalchuk; Arnold J. M. Driessen

BackgroundThe superfamily of ABC proteins is among the largest known in nature. Its members are mainly, but not exclusively, involved in the transport of a broad range of substrates across biological membranes. Many contribute to multidrug resistance in microbial pathogens and cancer cells. The diversity of ABC proteins in fungi is comparable with those in multicellular animals, but so far fungal ABC proteins have barely been studied.ResultsWe performed a phylogenetic analysis of the ABC proteins extracted from the genomes of 27 fungal species from 18 orders representing 5 fungal phyla thereby covering the most important groups. Our analysis demonstrated that some of the subfamilies of ABC proteins remained highly conserved in fungi, while others have undergone a remarkable group-specific diversification. Members of the various fungal phyla also differed significantly in the number of ABC proteins found in their genomes, which is especially reduced in the yeast S. cerevisiae and S. pombe.ConclusionsData obtained during our analysis should contribute to a better understanding of the diversity of the fungal ABC proteins and provide important clues about their possible biological functions.


PLOS Genetics | 2014

Analysis of the Phlebiopsis gigantea Genome, Transcriptome and Secretome Provides Insight into Its Pioneer Colonization Strategies of Wood

Chiaki Hori; Takuya Ishida; Kiyohiko Igarashi; Masahiro Samejima; Hitoshi Suzuki; Emma R. Master; Patricia Ferreira; Francisco J. Ruiz-Dueñas; Benjamin W. Held; Paulo Canessa; Luis F. Larrondo; Monika Schmoll; Irina S. Druzhinina; Christian P. Kubicek; Jill Gaskell; Phil Kersten; Franz J. St. John; Jeremy D. Glasner; Grzegorz Sabat; Sandra Splinter BonDurant; Khajamohiddin Syed; Jagjit S. Yadav; Anthony C. Mgbeahuruike; Andriy Kovalchuk; Fred O. Asiegbu; Gerald Lackner; Dirk Hoffmeister; Jorge Rencoret; Ana Gutiérrez; Hui Sun

Collectively classified as white-rot fungi, certain basidiomycetes efficiently degrade the major structural polymers of wood cell walls. A small subset of these Agaricomycetes, exemplified by Phlebiopsis gigantea, is capable of colonizing freshly exposed conifer sapwood despite its high content of extractives, which retards the establishment of other fungal species. The mechanism(s) by which P. gigantea tolerates and metabolizes resinous compounds have not been explored. Here, we report the annotated P. gigantea genome and compare profiles of its transcriptome and secretome when cultured on fresh-cut versus solvent-extracted loblolly pine wood. The P. gigantea genome contains a conventional repertoire of hydrolase genes involved in cellulose/hemicellulose degradation, whose patterns of expression were relatively unperturbed by the absence of extractives. The expression of genes typically ascribed to lignin degradation was also largely unaffected. In contrast, genes likely involved in the transformation and detoxification of wood extractives were highly induced in its presence. Their products included an ABC transporter, lipases, cytochrome P450s, glutathione S-transferase and aldehyde dehydrogenase. Other regulated genes of unknown function and several constitutively expressed genes are also likely involved in P. giganteas extractives metabolism. These results contribute to our fundamental understanding of pioneer colonization of conifer wood and provide insight into the diverse chemistries employed by fungi in carbon cycling processes.


Mycologia | 2013

Distribution and bioinformatic analysis of the cerato-platanin protein family in Dikarya

Hongxin Chen; Andriy Kovalchuk; Susanna Keriö; Fred O. Asiegbu

The cerato-platanin family is a group of small cysteine-rich fungal proteins new to science. They usually are abundantly secreted extracellularly and are involved in fungus-host interactions. With the advance of available fungal genome sequences, we performed a genomewide study of the distribution of this family in fungi and analyzed the common characteristics of the protein sequences. A total of 55 fungal genomes, including 27 from Ascomycota and 28 from Basidiomycota, were used. A total of 130 cerato-platanin homolog protein sequences were obtained and analyzed. Our results showed that cerato-platanin homologs existed in both Ascomycota and Basidiomycota but were lost in early branches of jelly fungi as well as in some groups with yeast or yeast-like forms in their life cycle. Homolog numbers varied considerably between Ascomycota and Basidiomycota. Phylogenetic analysis suggested that the ancestor of the Dikarya possessed multiple copies of cerato-platanins, which sorted differently in Ascomycota and Basidiomycota, and that this gene family might have expanded in the Basidiomycota. Almost all homologs contained signal peptide sequences, and the length of mature proteins were mainly 105–134 amino acids. Four cysteines involved in forming two disulfide bridges and signature sequences (CSD or CSN) were highly conserved in most homologs. These results indicated a higher diversity of the cerato-platanin family in Basidiomycota than Ascomycota.


Annual Review of Phytopathology | 2013

Antimicrobial Defenses and Resistance in Forest Trees: Challenges and Perspectives in a Genomic Era

Andriy Kovalchuk; Susanna Keriö; Abbot O. Oghenekaro; Emad Jaber; Tommaso Raffaello; Fred O. Asiegbu

Molecular pathology of forest trees for a long time lagged behind parallel studies on agricultural crop pathology. Recent technological advances have significantly contributed to the observed progress in this field. The first powerful impulse was provided by the completion of the black cottonwood genome sequence in 2006. Genomes of several other important tree species will be completed within a short time. Simultaneously, application of transcriptomics and next-generation sequencing (NGS) has resulted in the rapid accumulation of a vast amount of data on molecular interactions between trees and their microbial parasites. This review provides an overview of our current knowledge about these responses of forest trees to their pathogens, highlighting the achievements of the past decade, discussing the current state of the field, and emphasizing the prospects and challenges for the near future.


Nature Genetics | 2017

Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch

Jarkko Salojärvi; Olli Pekka Smolander; Kaisa Nieminen; Sitaram Rajaraman; Omid Safronov; Pezhman Safdari; Airi Lamminmäki; Juha Immanen; Tianying Lan; Jaakko Tanskanen; Pasi Rastas; Ali Amiryousefi; Balamuralikrishna Jayaprakash; Juhana Kammonen; Risto Hagqvist; Gugan Eswaran; Viivi Ahonen; Juan Antonio Alonso Serra; Fred O. Asiegbu; Juan de Dios Barajas-Lopez; Daniel Blande; Olga Blokhina; Tiina Blomster; Suvi K. Broholm; Mikael Brosché; Fuqiang Cui; Chris Dardick; Sanna Ehonen; Paula Elomaa; Sacha Escamez

Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightly-linked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A.


Mycologia | 2013

Diversity and evolution of ABC proteins in basidiomycetes

Andriy Kovalchuk; Yong-Hwan Lee; Fred O. Asiegbu

ABC proteins constitute one of the largest families of proteins. They are implicated in wide variety of cellular processes ranging from ribosome biogenesis to multidrug resistance. With the advance of fungal genomics, the number of known fungal ABC proteins increases rapidly but the information on their biological functions remains scarce. In this work we extended the previous analysis of fungal ABC proteins to include recently sequenced species of basidiomycetes. We performed an identification and initial cataloging of ABC proteins from 23 fungal species representing 10 orders within class Agaricomycotina. We identified more than 1000 genes coding for ABC proteins. Comparison of sets of ABC proteins present in basidiomycetes and ascomycetes revealed the existence of two groups of ABC proteins specific for basidiomycetes. Results of survey should contribute to the better understanding of evolution of ABC proteins in fungi and support further experimental work on their characterization.


BMC Evolutionary Biology | 2013

Evolutionary analysis of hydrophobin gene family in two wood-degrading basidiomycetes, Phlebia brevispora and Heterobasidion annosum s.l.

Anthony C. Mgbeahuruike; Andriy Kovalchuk; Hongxin Chen; Wimal Ubhayasekera; Fred O. Asiegbu

BackgroundHydrophobins are small secreted cysteine-rich proteins that play diverse roles during different phases of fungal life cycle. In basidiomycetes, hydrophobin-encoding genes often form large multigene families with up to 40 members. The evolutionary forces driving hydrophobin gene expansion and diversification in basidiomycetes are poorly understood. The functional roles of individual genes within such gene families also remain unclear. The relationship between the hydrophobin gene number, the genome size and the lifestyle of respective fungal species has not yet been thoroughly investigated. Here, we present results of our survey of hydrophobin gene families in two species of wood-degrading basidiomycetes, Phlebia brevispora and Heterobasidion annosum s.l. We have also investigated the regulatory pattern of hydrophobin-encoding genes from H. annosum s.s. during saprotrophic growth on pine wood as well as on culture filtrate from Phlebiopsis gigantea using micro-arrays. These data are supplemented by results of the protein structure modeling for a representative set of hydrophobins.ResultsWe have identified hydrophobin genes from the genomes of two wood-degrading species of basidiomycetes, Heterobasidion irregulare, representing one of the microspecies within the aggregate H. annosum s.l., and Phlebia brevispora. Although a high number of hydrophobin-encoding genes were observed in H. irregulare (16 copies), a remarkable expansion of these genes was recorded in P. brevispora (26 copies). A significant expansion of hydrophobin-encoding genes in other analyzed basidiomycetes was also documented (1–40 copies), whereas contraction through gene loss was observed among the analyzed ascomycetes (1–11 copies). Our phylogenetic analysis confirmed the important role of gene duplication events in the evolution of hydrophobins in basidiomycetes. Increased number of hydrophobin-encoding genes appears to have been linked to the species’ ecological strategy, with the non-pathogenic fungi having increased numbers of hydrophobins compared with their pathogenic counterparts. However, there was no significant relationship between the number of hydrophobin-encoding genes and genome size. Furthermore, our results revealed significant differences in the expression levels of the 16 H. annosum s.s. hydrophobin-encoding genes which suggest possible differences in their regulatory patterns.ConclusionsA considerable expansion of the hydrophobin-encoding genes in basidiomycetes has been observed. The distribution and number of hydrophobin-encoding genes in the analyzed species may be connected to their ecological preferences. Results of our analysis also have shown that H. annosum s.l. hydrophobin-encoding genes may be under positive selection. Our gene expression analysis revealed differential expression of H. annosum s.s. hydrophobin genes under different growth conditions, indicating their possible functional diversification.


Applied and Environmental Microbiology | 2016

Dominant Tree Species and Soil Type Affect the Fungal Community Structure in a Boreal Peatland Forest

Hui Sun; Eeva Terhonen; Andriy Kovalchuk; Hanna Tuovila; Hongxin Chen; Abbot O. Oghenekaro; Jussi Heinonsalo; Annegret Kohler; Risto Kasanen; Harri Vasander; Fred O. Asiegbu

ABSTRACT Boreal peatlands play a crucial role in global carbon cycling, acting as an important carbon reservoir. However, little information is available on how peatland microbial communities are influenced by natural variability or human-induced disturbances. In this study, we have investigated the fungal diversity and community structure of both the organic soil layer and buried wood in boreal forest soils using high-throughput sequencing of the internal transcribed spacer (ITS) region. We have also compared the fungal communities during the primary colonization of wood with those of the surrounding soils. A permutational multivariate analysis of variance (PERMANOVA) confirmed that the community composition significantly differed between soil types (P < 0.001) and tree species (P < 0.001). The distance-based linear models analysis showed that environmental variables were significantly correlated with community structure (P < 0.04). The availability of soil nutrients (Ca [P = 0.002], Fe [P = 0.003], and P [P = 0.003]) within the site was an important factor in the fungal community composition. The species richness in wood was significantly lower than in the corresponding soil (P < 0.004). The results of the molecular identification were supplemented by fruiting body surveys. Seven of the genera of Agaricomycotina identified in our surveys were among the top 20 genera observed in pyrosequencing data. Our study is the first, to our knowledge, fungal high-throughput next-generation sequencing study performed on peatlands; it further provides a baseline for the investigation of the dynamics of the fungal community in the boreal peatlands.


Mycologia | 2013

Comparative genomics and evolutionary analysis of hydrophobins from three species of wood-degrading fungi

Anthony C. Mgbeahuruike; Andriy Kovalchuk; Fred O. Asiegbu

Hydrophobins are small, secreted proteins playing important roles at different stages of fungal life cycles. Their characteristic feature is the presence of eight highly conserved cysteine residues. Here we present an inventory and evolutionary analysis of hydrophobin genes from three wood-degrading basidiomycetes, Phlebia brevispora, Ganoderma sp. and Bjerkandera adusta. The genomes of the three analyzed species are characterized by the presence of high copy numbers of hydrophobin genes. Results of the phylogenetic analysis of the identified proteins revealed that many of them share a high degree of sequence similarity and probably originated from a series of duplication events. The presence of several clusters of adjacent copies of the hydrophobin gene in a particular location in the genome further supports the interpretation that gene duplication has played a role in the evolution of hydrophobins in the analyzed species.


Fungal Biology | 2017

CYPome of the conifer pathogen Heterobasidion irregulare: Inventory, phylogeny, and transcriptional analysis of the response to biocontrol

Anthony C. Mgbeahuruike; Andriy Kovalchuk; Wimal Ubhayasekera; David R. Nelson; Jagjit S. Yadav

The molecular mechanisms underlying the interaction of the pathogen, Heterobasidion annosum s.l., the conifer tree and the biocontrol fungus, Phlebiopsis gigantea have not been fully elucidated. Members of the cytochrome P450 (CYP) protein family may contribute to the detoxification of components of chemical defence of conifer trees by H. annosum during infection. Additionally, they may also be involved in the interaction between H. annosum and P. gigantea. A genome-wide analysis of CYPs in Heterobasidion irregulare was carried out alongside gene expression studies. According to the Standardized CYP Nomenclature criteria, the H. irregulare genome has 121 CYP genes and 17 CYP pseudogenes classified into 11 clans, 35 families, and 64 subfamilies. Tandem CYP arrays originating from gene duplications and belonging to the same family and subfamily were found. Phylogenetic analysis showed that all the families of H. irregulare CYPs were monophyletic groups except for the family CYP5144. Microarray analysis revealed the transcriptional pattern for 130 transcripts of CYP-encoding genes during growth on culture filtrate produced by P. gigantea. The high level of P450 gene diversity identified in this study could result from extensive gene duplications presumably caused by the high metabolic demands of H. irregulare in its ecological niches.

Collaboration


Dive into the Andriy Kovalchuk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emad Jaber

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar

Hui Sun

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhen Zeng

University of Helsinki

View shared research outputs
Researchain Logo
Decentralizing Knowledge