Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andriy Sukhodub is active.

Publication


Featured researches published by Andriy Sukhodub.


The International Journal of Biochemistry & Cell Biology | 2009

M-LDH physically associated with sarcolemmal KATP channels mediates cytoprotection in heart embryonic H9C2 cells

Sofija Jovanović; Qingyou Du; Andriy Sukhodub; Aleksandar Jovanović

Muscle form of lactate dehydrogenase (M-LDH) physically associate with KATP channel subunits, Kir6.2 and SUR2A, and is an integral part of the ATP-sensitive K+ (KATP) channel protein complex in the heart. Here, we have shown that concomitant introduction of viral constructs containing truncated and mutated forms of M-LDH (ΔM-LDH) and 193gly-M-LDH respectively, generate a phenotype of rat heart embryonic H9C2 cells that do not contain functional M-LDH as a part of the KATP channel protein complex. The K+ current was increased in wild type cells, but not in cells expressing ΔM-LDH/193gly-M-LDH, when they were exposed to chemical hypoxia induced by 2,4 dinitrophenol (DNP; 10 mM). At the same time, the outcome of chemical hypoxia was much worse in ΔM-LDH/193gly-M-LDH phenotype than in the control one, and that was associated with increased loss of intracellular ATP in cells infected with ΔM-LDH/193gly-M-LDH. On the other hand, cells expressing Kir6.2AFA, a Kir6.2 mutant that abolishes KATP channel conductance without affecting intracellular ATP levels, survived chemical hypoxia much better than cells expressing ΔM-LDH/193gly-M-LDH. Based on the obtained results, we conclude that M-LDH physically associated with Kir6.2/SUR2A regulates the activity of sarcolemmal KATP channels as well as an intracellular ATP production during metabolic stress, both of which are important for cell survival.


Pharmacological Research | 2010

Nicotinamide-rich diet protects the heart against ischaemia―reperfusion in mice: A crucial role for cardiac SUR2A

Andriy Sukhodub; Qingyou Du; Sofija Jovanović; Aleksandar Jovanović

Graphical abstract


Biochimica et Biophysica Acta | 2010

Infection with AV-SUR2A protects H9C2 cells against metabolic stress: a mechanism of SUR2A-mediated cytoprotection independent from the K(ATP) channel activity.

Qingyou Du; Sofija Jovanović; Andriy Sukhodub; Aleksandar Jovanović

Transgenic mice overexpressing SUR2A, a subunit of ATP-sensitive K+ (KATP) channels, acquire resistance to myocardial ischaemia. However, the mechanism of SUR2A-mediated cytoprotection is yet to be fully understood. Adenoviral SUR2A construct (AV-SUR2A) increased SUR2A expression, number of KATP channels and subsarcolemmal ATP in glycolysis-sensitive manner in H9C2 cells. It also increased K+ current in response to chemical hypoxia, partially preserved subsarcolemmal ATP and increased cell survival. Kir6.2AFA, a mutant form of Kir6.2 with largely decreased K+ conductance, abolished the effect of SUR2A on K+ current, did not affect SUR2A-induced increase in subsarcolemmal ATP and partially inhibited SUR2A-mediated cytoprotection. Infection with 193gly-M-LDH, an inactive mutant of muscle lactate dehydrogenase, abolished the effect of SUR2A on K+ current, subsarcolemmal ATP and cell survival; the effect of 193gly-M-LDH on cell survival was significantly more pronounced than those of Kir6.2AFA. We conclude that AV-SUR2A increases resistance to metabolic stress in H9C2 cells by increasing the number of sarcolemmal KATP channels and subsarcolemmal ATP.


Biochimica et Biophysica Acta | 2009

A dual mechanism of cytoprotection afforded by M-LDH in embryonic heart H9C2 cells.

Sofija Jovanović; Qingyou Du; Andriy Sukhodub; Aleksandar Jovanović

Muscle form of lactate dehydrogenase (M-LDH), a minor LDH form in cardiomyocytes, physically interacts with ATP-sensitive K+ (KATP) channel-forming subunits. Here, we have shown that expression of 193gly-M-LDH, an inactive mutant of M-LDH, inhibit regulation of the KATP channels activity by LDH substrates in embryonic rat heart H9C2 cells. In cells expressing 193gly-M-LDH chemical hypoxia has failed to activate KATP channels. The similar results were obtained in H9C2 cells expressing Kir6.2AFA, a mutant form of Kir6.2 with largely decreased K+ conductance. Kir6.2AFA has slightly, but significantly, reduced cellular survival under chemical hypoxia while the deleterious effect of 193gly-M-LDH was significantly more pronounced. The levels of total and subsarcolemmal ATP in H9C2 cells were not affected by Kir6.2AFA, but the expression of 193gly-M-LDH led to lower levels of subsarcolemmal ATP during chemical hypoxia. We conclude that M-LDH regulates both the channel activity and the levels of subsarcolemmal ATP and that both mechanism contribute to the M-LDH-mediated cytoprotection.


Biogerontology | 2011

Ageing-induced decline in physical endurance in mice is associated with decrease in cardiac SUR2A and increase in cardiac susceptibility to metabolic stress: therapeutic prospects for up-regulation of SUR2A

Rajni Sudhir; Andriy Sukhodub; Qingyou Du; Sofija Jovanović; Aleksandar Jovanović

Ageing is characterized by decline in physical endurance which has been suggested to be partly due to diminished functional and adaptive reserve capacity of the heart. Ageing is associated with decrease in numbers of sarcolemmal ATP-sensitive K+ (KATP) channels, but whether this has anything to do with ageing-induced decline in physical endurance is yet to be determined. We have previously shown that the numbers of sarcolemmal KATP channels are controlled by the level of expression of SUR2A, a KATP channel regulatory subunit. Here, we have found that ageing decreases the level of SUR2A mRNA in the heart without affecting expression of pore-forming KATP channel subunits, Kir6.1 and Kir6.2. This effect of ageing was associated with decrease in levels of fully-assembled sarcolemmal KATP channels. At the same time, ageing was associated with decreased physical endurance. In order to determine whether increased expression of SUR2A would counteract ageing-induced decrease in physical endurance, we have taken advantage of mice which SUR2A levels are regulated by more efficient CMV promoter. These mice had increased resistance of cardiomyocytes to metabolic stress/hypoxia and increased physical endurance when compared to the wild type. In transgenic mice, ageing did not affect the level of SUR2A mRNA in the heart and the level of fully-assembled sarcolemmal KATP channels. The effect of increased SUR2A to resistance of cardiomyocytes to hypoxia and physical endurance was retained in old mice. The magnitude of these effects was such that they were significantly increased even when compared to those in wild type young mice. We conclude that (1) the level of SUR2A expression in the heart is important factor in regulating physical endurance, (2) ageing-induced decrease in cardiac SUR2A is, at least in part, responsible for ageing-induced decline in physical fitness and (3) up-regulation of SUR2A could be a viable strategy to counteract ageing-induced decline in physical endurance.


Human Reproduction | 2010

Human oocytes express ATP-sensitive K+ channels

Qingyou Du; Sofija Jovanović; Andriy Sukhodub; Evelyn Barratt; Ellen Drew; Katherine M. Whalley; Vanessa Kay; Marie McLaughlin; Evelyn E. Telfer; Christopher L.R. Barratt; Aleksandar Jovanović

BACKGROUND ATP-sensitive K(+) (K(ATP)) channels link intracellular metabolism with membrane excitability and play crucial roles in cellular physiology and protection. The K(ATP) channel protein complex is composed of pore forming, Kir6.x (Kir6.1 or Kir6.2) and regulatory, SURx (SUR2A, SUR2B or SUR1), subunits that associate in different combinations. The objective of this study was to determine whether mammalian oocytes (human, bovine, porcine) express K(ATP) channels. METHODS Supernumerary human oocytes at different stages of maturation were obtained from patients undergoing assisted conception treatments. Bovine and porcine oocytes in the germinal vesicle (GV) stage were obtained by aspirating antral follicles from abattoir-derived ovaries. The presence of mRNA for K(ATP) channel subunits was determined using real-time RT-PCR with primers specific for Kir6.2, Kir6.1, SUR1, SUR2A and SUR2B. To assess whether functional K(ATP) channels are present in human oocytes, traditional and perforated patch whole cell electrophysiology and immunoprecipitation/western blotting were used. RESULTS Real-time PCR revealed that mRNA for Kir6.1, Kir6.2, SUR2A and SUR2B, but not SUR1, were present in human oocytes of different stages. Only SUR2B and Kir6.2 mRNAs were detected in GV stage bovine and porcine oocytes. Immunoprecipitation with SUR2 antibody and western blotting with Kir6.1 antibody identified bands corresponding to these subunits in human oocytes. In human oocytes, 2,4-dinitrophenol (400 µM), a metabolic inhibitor known to decrease intracellular ATP and activate K(ATP) channels, increased whole cell K(+) current. On the other hand, K(+) current induced by low intracellular ATP was inhibited by extracellular glibenclamide (30 µM), an oral antidiabetic known to block the opening of K(ATP) channels. CONCLUSIONS In conclusion, mammalian oocytes express K(ATP) channels. This opens a new avenue of research into the complex relationship between metabolism and membrane excitability in oocytes under different conditions, including conception.


Biochimica et Biophysica Acta | 2015

Mild hypoxia in vivo regulates cardioprotective SUR2A: A role for Akt and LDH.

Khaja Shameem Mohammed Abdul; Sofija Jovanović; Qingyou Du; Andriy Sukhodub; Aleksandar Jovanović

High-altitude residents have lower mortality rates for ischaemic heart disease and this is ascribed to cardiac gene remodelling by chronic hypoxia. SUR2A is a cardioprotective ABC protein serving as a subunit of sarcolemmal ATP-sensitive K+ channels. The purpose of this study was to determine whether SUR2A is regulated by mild hypoxia in vivo and to elucidate the underlying mechanism. Mice were exposed to either 21% (control) or 18% (mild hypoxia) oxygen for 24 h. Exposure to 18% oxygen did not affect partial pressure of O2 (PO2) and CO2 (PCO2) in the blood, haematocrit or level of ATP in the heart. However, hypoxia increased myocardial lactate dehydrogenase (LDH) and lactate as well as NAD+ without affecting total NAD. SUR2A levels were significantly increased as well as myocardial resistance to ischaemia–reperfusion. Exposure to 18% oxygen did not phosphorylate extracellular signal regulated kinases (ERK1/2) or AMP activated protein kinase (AMPK), but it phosphorylated protein kinase B (Akt). An inhibitor of phosphoinositide 3-kinases (PI3K), LY294002 (0.2 mg/mouse), abolished all observed effects of hypoxia. LDH inhibitors, galloflavin (50 μM) and sodium oxamate (80 mM) significantly decreased levels of SUR2A in heart embryonic H9c2 cells, while inactive mutant LDH form, gly193-M-LDH increased cellular sensitivity towards stress induced by 2,4-dinitrophenol (10 mM). Treatment of H9c2 cells with sodium lactate (30 mM) increased intracellular lactate, but did not affect LDH activity or SUR2A levels. We conclude that PI3K/Akt signalling pathway and LDH play a crucial role in increase of cardiac SUR2A induced by in vivo exposure to 18% oxygen.


Journal of Cellular and Molecular Medicine | 2011

Nicotinamide-rich diet improves physical endurance by up-regulating SUR2A in the heart

Andriy Sukhodub; Rajni Sudhir; Qingyou Du; Sofija Jovanović; Santiago Reyes; Aleksandar Jovanović

SUR2A is an ATP‐binding protein that serves as a regulatory subunit of cardioprotective ATP‐sensitive K+ (KATP) channels. Based on signalling pathway regulating SUR2A expression and SUR2A role in regulating numbers of fully assembled KATP channels, we have suggested that nicotinamide‐rich diet could improve physical endurance by stimulating SUR2A expression. We have found that mice on nicotinamide‐rich diet significantly improved physical endurance, which was associated with significant increase in expression of SUR2A. Transgenic mice with solely overexpressed SUR2A on control diet had increased physical endurance in a similar manner as the wild‐type mice on nicotinamide‐rich diet. The experiments focused on action membrane potential and intracellular Ca2+ concentration have demonstrated that increased SUR2A expression was associated with the activation of sarcolemmal KATP channels and steady Ca2+ levels in cardiomyocytes in response to β‐adrenergic stimulation. In contrast, the same challenge in the wild‐type was characterized by a lack of the channel activation and rise in intracellular Ca2+. Nicotinamide‐rich diet was ineffective to increase physical endurance in mice lacking KATP channels. This study has shown that nicotinamide‐rich diet improves physical endurance by increasing expression of SUR2A and that this is a sole mechanism of the nicotinamide‐rich diet effect. The obtained results suggest that oral nicotinamide is a regulator of SUR2A expression and has a potential as a drug that can improve physical endurance in conditions where this effect would be desirable.


Biochimica et Biophysica Acta | 2014

Upregulation of cardioprotective SUR2A by sub-hypoxic drop in oxygen.

Khaja Shameem Mohammed Abdul; Sofija Jovanović; Andriy Sukhodub; Qingyou Du; Aleksandar Jovanović

The effects of hypoxia on gene expression have been vigorously studied, but possible effects of small changes in oxygen tension have never been addressed. SUR2A is an atypical ABC protein serving as a regulatory subunit of sarcolemmal ATP-sensitive K+ (KATP) channels. Up-regulation of SUR2A is associated with cardioprotection and improved physical endurance. Here, we have found that a 24 h-long exposure to slightly decreased ambient fractional concentration of oxygen (20% oxygen), which is an equivalent to oxygen tension at 350 m above sea level, significantly increased levels of SUR2A in the heart despite that this drop of oxygen did not affect levels of O2, CO2 and hematocrit in the blood or myocardial levels of ATP, lactate and NAD/NADH/NAD+. Hearts from mice exposed to 20% oxygen were significantly more resistant to ischaemia-reperfusion when compared to control ones. Decrease in fractional oxygen concentration of just 0.9% was associated with phosphorylation of ERK1/2, but not Akt, which was essential for up-regulation of SUR2A. These findings indicate that a small drop in oxygen tension up-regulates SUR2A in the heart by activating ERK signaling pathway. This is the first report to suggest that a minimal change in oxygen tension could have a profound signaling effect.


Biochemistry and biophysics reports | 2018

Insulin down-regulates cardioprotective SUR2A in the heart-derived H9c2 cells: A possible explanation for some adverse effects of insulin therapy

Qingyou Du; Sofija Jovanović; Andriy Sukhodub; Yong Shi Ngoi; Aashray Lal; Marina Zheleva; Aleksandar Jovanović

Some recent studies associated insulin therapy with negative cardiovascular events and shorter lifespan. SUR2A, a KATP channel subunit, regulate cardioprotection and cardiac ageing. Here, we have tested whether glucose and insulin regulate expression of SUR2A/KATP channel subunits and resistance to metabolic stress in heart H9c2 cells. Absence of glucose in culture media decreased SUR2A mRNA, while mRNAs of Kir6.2, Kir6.1, SUR1 and IES SUR2B were increased. 2-deoxyglucose (50 mM) decreased mRNAs of SUR2A, SUR2B and SUR1, did not affect IES SUR2A and IES SUR2B mRNAs and increased Kir6.2 mRNA. No glucose and 2-deoxyglucose (50 mM) decreased resistance to an inhibitor of oxidative phosphorylation, DNP (10 mM). 50 mM glucose did not alter KATP channel subunits nor cellular resistance to DNP (10 mM). Insulin (20 ng/ml) in both physiological and high glucose (50 mM) down-regulated SUR2A while upregulating Kir6.1 and Kir6.2 (in high glucose only). Insulin (20 ng/ml) in physiological and high glucose decreased cell survival in DNP (10 mM). As opposed to Kir6.2, infection with SUR2A resulted in titre-dependent cytoprotection. We conclude that insulin decreases resistance to metabolic stress in H9c2 cells by decreasing SUR2A expression. Lower cardiac SUR2A levels underlie increased myocardial susceptibility to metabolic stress and shorter lifespan.

Collaboration


Dive into the Andriy Sukhodub's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge