Andrzej Bargiela
University of Nottingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrzej Bargiela.
IEEE Transactions on Knowledge and Data Engineering | 2010
Wei Wang; Payam M. Barnaghi; Andrzej Bargiela
Probabilistic topic models were originally developed and utilized for document modeling and topic extraction in Information Retrieval. In this paper, we describe a new approach for automatic learning of terminological ontologies from text corpus based on such models. In our approach, topic models are used as efficient dimension reduction techniques, which are able to capture semantic relationships between word-topic and topic-document interpreted in terms of probability distributions. We propose two algorithms for learning terminological ontologies using the principle of topic relationship and exploiting information theory with the probabilistic topic models learned. Experiments with different model parameters were conducted and learned ontology statements were evaluated by the domain experts. We have also compared the results of our method with two existing concept hierarchy learning methods on the same data set. The study shows that our method outperforms other methods in terms of recall and precision measures. The precision level of the learned ontology is sufficient for it to be deployed for the purpose of browsing, navigation, and information search and retrieval in digital libraries.
TAEBC-2009 | 2009
Andrzej Bargiela; Witold Pedrycz
The idea of Human-Centric Information Processing was prompted by the pioneering work of Zadeh Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic (1997). Since the publication of this work, a large number of researchers have focused on identifying the nature of information granulation and its specific relationship to human information processing. We now begin to witness the rich and manifold results of this concentrated research effort of the last decade. This volume is intended to document the milestone contributions to human-centric information processing research and to demonstrate the emerging computational methods and the processing environments that arose from these research insights. The chapters, written by experts in the field, cover the fundamental methodologies, the new information processing paradigm, functional architectures of granular information processing and granular modeling applications. The book provides a valuable reference for researchers, graduate students intending to focus on particular aspects of human-centric information processing from a broadly informed perspective and for practitioners to whom the breadth of coverage of topics will help inspire innovative applications.
IEEE Transactions on Fuzzy Systems | 2008
Andrzej Bargiela; Witold Pedrycz
Human-centered information processing has been pioneered by Zadeh through his introduction of the concept of fuzzy sets in the mid 1960s. The insights that were afforded through this formalism have led to the development of the granular computing (GrC) paradigm in the late 1990s. Subsequent research has highlighted the fact that many founding principles of GrC have, in fact, been adopted in other information-processing paradigms and, indeed, in the context of various scientific methodologies. This study expands on our earlier research exploring the foundations of GrC and casting it as a structured combination of algorithmic and non- algorithmic information processing that mimics human, intelligent synthesis of knowledge from information.
systems man and cybernetics | 2012
Witold Pedrycz; Andrzej Bargiela
Clustering forms one of the most visible conceptual and algorithmic framework of developing information granules. In spite of the algorithm being used, the representation of information granules-clusters is predominantly numeric (coming in the form of prototypes, partition matrices, dendrograms, etc.). In this paper, we consider a concept of granular prototypes that generalizes the numeric representation of the clusters and, in this way, helps capture more details about the data structure. By invoking the granulation-degranulation scheme, we design granular prototypes being reflective of the structure of data to a higher extent than the representation that is provided by their numeric counterparts (prototypes). The design is formulated as an optimization problem, which is guided by the coverage criterion, meaning that we maximize the number of data for which their granular realization includes the original data. The granularity of the prototypes themselves is treated as an important design asset; hence, its allocation to the individual prototypes is optimized so that the coverage criterion becomes maximized. With this regard, several schemes of optimal allocation of information granularity are investigated, where interval-valued prototypes are formed around the already produced numeric representatives. Experimental studies are provided in which the design of granular prototypes of interval format is discussed and characterized.
Pattern Recognition Letters | 2010
Witold Pedrycz; Andrzej Bargiela
Fuzzy clustering being focused on the discovery of structure in multivariable data is of relational nature in the sense of not distinguishing between the natures of the individual variables (features) encountered in the problem. In this study, we revisit the generic approach to clustering by studying situations in which there are families of features of descriptive and functional nature whose semantics needs to be incorporated into the clustering algorithm. While the structure is determined on the basis of all features taken en-block, it is anticipated that the topology revealed in this manner would aid the effectiveness of determining values of functional features given the vector of the corresponding descriptive features. We propose an augmented distance in which the families of descriptive and predictive features are distinguished through some weighted version of the distance between patterns. The optimization of this distance is guided by a reconstruction criterion, which helps minimize the reconstruction error between the original vector of functional features and their reconstruction realized by means of descriptive features. Experimental results are offered to demonstrate the performance of the clustering and quantify the effect of reaching balance between semantically distinct families of features.
systems man and cybernetics | 2002
Witold Pedrycz; Andrzej Bargiela
The study is devoted to a granular analysis of data. We develop a new clustering algorithm that organizes findings about data in the form of a collection of information granules-hyperboxes. The clustering carried out here is an example of a granulation mechanism. We discuss a compatibility measure guiding a construction (growth) of the clusters and explain a rationale behind their development. The clustering promotes a data mining way of problem solving by emphasizing the transparency of the results (hyperboxes). We discuss a number of indexes describing hyperboxes and expressing relationships between such information granules. It is also shown how the resulting family of the information granules is a concise descriptor of the structure of the data-a granular signature of the data. We examine the properties of features (variables) occurring of the problem as they manifest in the setting of the information granules. Numerical experiments are carried out based on two-dimensional (2-D) synthetic data as well as multivariable Boston data available on the WWW.
European Journal of Operational Research | 2009
Evgeny Agafonov; Andrzej Bargiela; Edmund K. Burke; Evtim Peytchev
Many of the analyses of time series that arise in real-life situations require the adoption of various simplifying assumptions so as to cope with the complexity of the phenomena under consideration. Whilst accepting that these simplifications lead to heuristics providing less accurate processing of information compared to the solution of analytical equations, the intelligent choice of the simplifications coupled with the empirical verification of the resulting heuristic has proven itself to be a powerful systems modelling paradigm. In this study, we look at the theoretical underpinning of a successful heuristic for estimation of urban travel times from lane occupancy measurements. We show that by interpreting time series as statistical processes with a known distribution it is possible to estimate travel time as a limit value of an appropriately defined statistical process. The proof of the theorem asserting the above, supports the conclusion that it is possible to design a heuristic that eliminates the adverse effect of spurious readings without loosing temporal resolution of data (as implied by the standard method of data averaging). The original contribution of the paper concerning the link between the analytical modelling and the design of heuristics is general and relevant to a broad spectrum of applications.
Archive | 2012
Tomoharu Nakashima; Takeshi Sumitani; Andrzej Bargiela
Incremental construction of fuzzy rule-based classifiers is studied in this paper. It is assumed that not all training patterns are given a priori for training classifiers, but are gradually made available over time. It is also assumed the previously available training patterns can not be used in the following time steps. Thus fuzzy rule-based classifiers should be constructed by updating already constructed classifiers using the available training patterns at each time step. Incremental methods are proposed for this type of pattern classification problems. A series of computational experiments are conducted in order to examine the performance of the proposed incremental construction methods of fuzzy rule-based classifiers using a simple artificial pattern classification problem.
Fuzzy Sets and Systems | 2007
Andrzej Bargiela; Witold Pedrycz; Tomoharu Nakashima
In this paper, we propose an iterative algorithm for multiple regression with fuzzy variables. While using the standard least-squares criterion as a performance index, we pose the regression problem as a gradient-descent optimisation. The separation of the evaluation of the gradient and the update of the regression variables makes it possible to avoid undue complication of analytical formulae for multiple regression with fuzzy data. The origins of fuzzy input data are traced back to the fundamental concept of information granulation and an example FCM-based granulation method is proposed and illustrated by some numerical examples. The proposed multiple regression algorithm is applied to one-, three- and nine-dimensional synthetic data sets as well as the 13-dimensional Boston Housing dataset from the machine learning repository. The algorithms performance is illustrated by the corresponding plots of convergence of regression parameters and the values of the prediction error of the resulting regression model. General comments on the numerical complexity of the proposed algorithm are also provided.
European Journal of Operational Research | 2014
Syariza Abdul Rahman; Andrzej Bargiela; Edmund K. Burke; Ender Özcan; Barry McCollum; Paul McMullan
In this paper, we investigate adaptive linear combinations of graph coloring heuristics with a heuristic modifier to address the examination timetabling problem. We invoke a normalisation strategy for each parameter in order to generalise the specific problem data. Two graph coloring heuristics were used in this study (largest degree and saturation degree). A score for the difficulty of assigning each examination was obtained from an adaptive linear combination of these two heuristics and examinations in the list were ordered based on this value. The examinations with the score value representing the higher difficulty were chosen for scheduling based on two strategies. We tested for single and multiple heuristics with and without a heuristic modifier with different combinations of weight values for each parameter on the Toronto and ITC2007 benchmark data sets. We observed that the combination of multiple heuristics with a heuristic modifier offers an effective way to obtain good solution quality. Experimental results demonstrate that our approach delivers promising results. We conclude that this adaptive linear combination of heuristics is a highly effective method and simple to implement.