Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrzej Kilian is active.

Publication


Featured researches published by Andrzej Kilian.


Nature | 2012

The banana (Musa acuminata) genome and the evolution of monocotyledonous plants.

Angélique D’Hont; Jean-Marc Aury; Franc-Christophe Baurens; Françoise Carreel; Olivier Garsmeur; Benjamin Noel; Stéphanie Bocs; Gaëtan Droc; Mathieu Rouard; Corinne Da Silva; Kamel Jabbari; Céline Cardi; Julie Poulain; Marlène Souquet; Karine Labadie; Cyril Jourda; Juliette Lengellé; Marguerite Rodier-Goud; Adriana Alberti; Maria Bernard; Margot Corréa; Saravanaraj Ayyampalayam; Michael R. McKain; Jim Leebens-Mack; Diane Burgess; Michael Freeling; Didier Mbéguié-A-Mbéguié; Matthieu Chabannes; Thomas Wicker; Olivier Panaud

Bananas (Musa spp.), including dessert and cooking types, are giant perennial monocotyledonous herbs of the order Zingiberales, a sister group to the well-studied Poales, which include cereals. Bananas are vital for food security in many tropical and subtropical countries and the most popular fruit in industrialized countries. The Musa domestication process started some 7,000 years ago in Southeast Asia. It involved hybridizations between diverse species and subspecies, fostered by human migrations, and selection of diploid and triploid seedless, parthenocarpic hybrids thereafter widely dispersed by vegetative propagation. Half of the current production relies on somaclones derived from a single triploid genotype (Cavendish). Pests and diseases have gradually become adapted, representing an imminent danger for global banana production. Here we describe the draft sequence of the 523-megabase genome of a Musa acuminata doubled-haploid genotype, providing a crucial stepping-stone for genetic improvement of banana. We detected three rounds of whole-genome duplications in the Musa lineage, independently of those previously described in the Poales lineage and the one we detected in the Arecales lineage. This first monocotyledon high-continuity whole-genome sequence reported outside Poales represents an essential bridge for comparative genome analysis in plants. As such, it clarifies commelinid-monocotyledon phylogenetic relationships, reveals Poaceae-specific features and has led to the discovery of conserved non-coding sequences predating monocotyledon–eudicotyledon divergence.


Science | 2008

A Physical Map of the 1-Gigabase Bread Wheat Chromosome 3B

Etienne Paux; Pierre Sourdille; Jérôme Salse; Cyrille Saintenac; Frédéric Choulet; Philippe Leroy; Abraham B. Korol; Monika Michalak; Shahryar F. Kianian; Wolfgang Spielmeyer; Evans S. Lagudah; Daryl J. Somers; Andrzej Kilian; Michael Alaux; Sonia Vautrin; Hélène Bergès; Kellye Eversole; R. Appels; Jan Safar; Hana Šimková; Jaroslav Dolezel; M. Bernard; Catherine Feuillet

As the staple food for 35% of the worlds population, wheat is one of the most important crop species. To date, sequence-based tools to accelerate wheat improvement are lacking. As part of the international effort to sequence the 17–billion–base-pair hexaploid bread wheat genome (2n = 6x = 42 chromosomes), we constructed a bacterial artificial chromosome (BAC)–based integrated physical map of the largest chromosome, 3B, that alone is 995 megabases. A chromosome-specific BAC library was used to assemble 82% of the chromosome into 1036 contigs that were anchored with 1443 molecular markers, providing a major resource for genetic and genomic studies. This physical map establishes a template for the remaining wheat chromosomes and demonstrates the feasibility of constructing physical maps in large, complex, polyploid genomes with a chromosome-based approach.


PLOS Genetics | 2011

Finished Genome of the Fungal Wheat Pathogen Mycosphaerella graminicola Reveals Dispensome Structure, Chromosome Plasticity, and Stealth Pathogenesis

Stephen B. Goodwin; Sarrah Ben M'Barek; Braham Dhillon; Alexander H J Wittenberg; Charles F. Crane; James K. Hane; Andrew J Foster; Theo van der Lee; Jane Grimwood; Andrea Aerts; John Antoniw; Andy M. Bailey; Burt H. Bluhm; Judith Bowler; Jim Bristow; Ate van der Burgt; Blondy Canto-Canche; Alice C. L. Churchill; Laura Conde-Ferràez; Hans J. Cools; Pedro M. Coutinho; Michael Csukai; Paramvir Dehal; Pierre J. G. M. de Wit; Bruno Giuliano Garisto Donzelli; Henri C. van de Geest; Roeland C. H. J. van Ham; Kim E. Hammond-Kosack; Bernard Henrissat; Andrzej Kilian

The plant-pathogenic fungus Mycosphaerella graminicola (asexual stage: Septoria tritici) causes septoria tritici blotch, a disease that greatly reduces the yield and quality of wheat. This disease is economically important in most wheat-growing areas worldwide and threatens global food production. Control of the disease has been hampered by a limited understanding of the genetic and biochemical bases of pathogenicity, including mechanisms of infection and of resistance in the host. Unlike most other plant pathogens, M. graminicola has a long latent period during which it evades host defenses. Although this type of stealth pathogenicity occurs commonly in Mycosphaerella and other Dothideomycetes, the largest class of plant-pathogenic fungi, its genetic basis is not known. To address this problem, the genome of M. graminicola was sequenced completely. The finished genome contains 21 chromosomes, eight of which could be lost with no visible effect on the fungus and thus are dispensable. This eight-chromosome dispensome is dynamic in field and progeny isolates, is different from the core genome in gene and repeat content, and appears to have originated by ancient horizontal transfer from an unknown donor. Synteny plots of the M. graminicola chromosomes versus those of the only other sequenced Dothideomycete, Stagonospora nodorum, revealed conservation of gene content but not order or orientation, suggesting a high rate of intra-chromosomal rearrangement in one or both species. This observed “mesosynteny” is very different from synteny seen between other organisms. A surprising feature of the M. graminicola genome compared to other sequenced plant pathogens was that it contained very few genes for enzymes that break down plant cell walls, which was more similar to endophytes than to pathogens. The stealth pathogenesis of M. graminicola probably involves degradation of proteins rather than carbohydrates to evade host defenses during the biotrophic stage of infection and may have evolved from endophytic ancestors.


Theoretical and Applied Genetics | 2006

Low level of genetic diversity in cultivated pigeonpea compared to its wild relatives is revealed by diversity arrays technology

Shiying Yang; Wen Pang; Gavin Ash; John D. I. Harper; Jason Carling; Peter Wenzl; Eric Huttner; Xuxiao Zong; Andrzej Kilian

Understanding the distribution of genetic diversity among individuals, populations and gene pools is crucial for the efficient management of germplasm collections and breeding programs. Diversity analysis is routinely carried out using sequencing of selected gene(s) or molecular marker technologies. Here we report on the development of Diversity Arrays Technology (DArT) for pigeonpea (Cajanus cajan) and its wild relatives. DArT tests thousands of genomic loci for polymorphism and provides the binary scores for hundreds of markers in a single hybridization-based assay. We tested eight complexity reduction methods using various combinations of restriction enzymes and selected PstI/HaeIII genomic representation with the largest frequency of polymorphic clones (19.8%) to produce genotyping arrays. The performance of the PstI/HaeIII array was evaluated by typing 96 accessions representing nearly 20 species of Cajanus. A total of nearly 700 markers were identified with the average call rate of 96.0% and the scoring reproducibility of 99.7%. DArT markers revealed genetic relationships among the accessions consistent with the available information and systematic classification. Most of the diversity was among the wild relatives of pigeonpea or between the wild species and the cultivated C. cajan. Only 64 markers were polymorphic among the cultivated accessions. Such narrow genetic base is likely to represent a serious impediment to breeding progress in pigeonpea. Our study shows that DArT can be effectively applied in molecular systematics and biodiversity studies.


Plant Biotechnology Journal | 2012

A multiparent advanced generation inter‐cross population for genetic analysis in wheat

Bevan Emma Huang; Andrew W. George; Kerrie L. Forrest; Andrzej Kilian; Matthew J. Hayden; Matthew K. Morell; Colin Cavanagh

We present the first results from a novel multiparent advanced generation inter-cross (MAGIC) population derived from four elite wheat cultivars. The large size of this MAGIC population (1579 progeny), its diverse genetic composition and high levels of recombination all contribute to its value as a genetic resource. Applications of this resource include interrogation of the wheat genome and the analysis of gene-trait association in agronomically important wheat phenotypes. Here, we report the utilization of a MAGIC population for the first time for linkage map construction. We have constructed a linkage map with 1162 DArT, single nucleotide polymorphism and simple sequence repeat markers distributed across all 21 chromosomes. We benchmark this map against a high-density DArT consensus map created by integrating more than 100 biparental populations. The linkage map forms the basis for further exploration of the genetic architecture within the population, including characterization of linkage disequilibrium, founder contribution and inclusion of an alien introgression into the genetic map. Finally, we demonstrate the application of the resource for quantitative trait loci mapping using the complex traits plant height and hectolitre weight as a proof of principle.


PLOS ONE | 2013

Genome-wide association mapping of root traits in a japonica rice panel.

Brigitte Courtois; Alain Audebert; Audrey Dardou; Sandrine Roques; Thaura Ghneim Herrera; Gaëtan Droc; Julien Frouin; Lauriane Rouan; Eric Gozé; Andrzej Kilian; Nourollah Ahmadi; Michael Dingkuhn

Rice is a crop prone to drought stress in upland and rainfed lowland ecosystems. A deep root system is recognized as the best drought avoidance mechanism. Genome-wide association mapping offers higher resolution for locating quantitative trait loci (QTLs) than QTL mapping in biparental populations. We performed an association mapping study for root traits using a panel of 167 japonica accessions, mostly of tropical origin. The panel was genotyped at an average density of one marker per 22.5 kb using genotyping by sequencing technology. The linkage disequilibrium in the panel was high (r2>0.6, on average, for 20 kb mean distances between markers). The plants were grown in transparent 50 cm × 20 cm × 2 cm Plexiglas nailboard sandwiches filled with 1.5 mm glass beads through which a nutrient solution was circulated. Root system architecture and biomass traits were measured in 30-day-old plants. The panel showed a moderate to high diversity in the various traits, particularly for deep (below 30 cm depth) root mass and the number of deep roots. Association analyses were conducted using a mixed model involving both population structure and kinship to control for false positives. Nineteen associations were significant at P<1e-05, and 78 were significant at P<1e-04. The greatest numbers of significant associations were detected for deep root mass and the number of deep roots, whereas no significant associations were found for total root biomass or deep root proportion. Because several QTLs for different traits were co-localized, 51 unique loci were detected; several co-localized with meta-QTLs for root traits, but none co-localized with rice genes known to be involved in root growth. Several likely candidate genes were found in close proximity to these loci. Additional work is necessary to assess whether these markers are relevant in other backgrounds and whether the genes identified are robust candidates.


Molecular Genetics and Genomics | 2005

Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana

Alexander H. J. Wittenberg; Theo van der Lee; Cyril Cayla; Andrzej Kilian; Richard G. F. Visser; Henk J. Schouten

Diversity Arrays Technology (DArT) is a microarray-based DNA marker technique for genome-wide discovery and genotyping of genetic variation. DArT allows simultaneous scoring of hundreds of restriction site based polymorphisms between genotypes and does not require DNA sequence information or site-specific oligonucleotides. This paper demonstrates the potential of DArT for genetic mapping by validating the quality and molecular basis of the markers, using the model plant Arabidopsis thaliana. Restriction fragments from a genomic representation of the ecotype Landsberg erecta (Ler) were amplified by PCR, individualized by cloning and spotted onto glass slides. The arrays were then hybridized with labeled genomic representations of the ecotypes Columbia (Col) and Ler and of individuals from an F2 population obtained from a Col × Ler cross. The scoring of markers with specialized software was highly reproducible and 107 markers could unambiguously be ordered on a genetic linkage map. The marker order on the genetic linkage map coincided with the order on the DNA sequence map. Sequencing of the Ler markers and alignment with the available Col genome sequence confirmed that the polymorphism in DArT markers is largely a result of restriction site polymorphisms.


BMC Genomics | 2008

DArT markers: diversity analyses and mapping in Sorghum bicolor.

Emma S. Mace; Ling Xia; David Jordan; Kirsten Halloran; Dipal K Parh; Eric Huttner; Peter Wenzl; Andrzej Kilian

BackgroundThe sequential nature of gel-based marker systems entails low throughput and high costs per assay. Commonly used marker systems such as SSR and SNP are also dependent on sequence information. These limitations result in high cost per data point and significantly limit the capacity of breeding programs to obtain sufficient return on investment to justify the routine use of marker-assisted breeding for many traits and particularly quantitative traits. Diversity Arrays Technology (DArT™) is a cost effective hybridisation-based marker technology that offers a high multiplexing level while being independent of sequence information. This technology offers sorghum breeding programs an alternative approach to whole-genome profiling. We report on the development, application, mapping and utility of DArT™ markers for sorghum germplasm.ResultsA genotyping array was developed representing approximately 12,000 genomic clones using Pst I+Ban II complexity with a subset of clones obtained through the suppression subtractive hybridisation (SSH) method. The genotyping array was used to analyse a diverse set of sorghum genotypes and screening a Recombinant Inbred Lines (RIL) mapping population. Over 500 markers detected variation among 90 accessions used in a diversity analysis. Cluster analysis discriminated well between all 90 genotypes. To confirm that the sorghum DArT markers behave in a Mendelian manner, we constructed a genetic linkage map for a cross between R931945-2-2 and IS 8525 integrating DArT and other marker types. In total, 596 markers could be placed on the integrated linkage map, which spanned 1431.6 cM. The genetic linkage map had an average marker density of 1/2.39 cM, with an average DArT marker density of 1/3.9 cM.ConclusionWe have successfully developed DArT markers for Sorghum bicolor and have demonstrated that DArT provides high quality markers that can be used for diversity analyses and to construct medium-density genetic linkage maps. The high number of DArT markers generated in a single assay not only provides a precise estimate of genetic relationships among genotypes, but also their even distribution over the genome offers real advantages for a range of molecular breeding and genomics applications.


PLOS ONE | 2009

Meiosis Drives Extraordinary Genome Plasticity in the Haploid Fungal Plant Pathogen Mycosphaerella graminicola

Alexander H. J. Wittenberg; Theo van der Lee; Sarrah Ben M'Barek; S.B. Ware; Stephen B. Goodwin; Andrzej Kilian; Richard G. F. Visser; Gert H. J. Kema; Henk J. Schouten

Meiosis in the haploid plant-pathogenic fungus Mycosphaerella graminicola results in eight ascospores due to a mitotic division following the two meiotic divisions. The transient diploid phase allows for recombination among homologous chromosomes. However, some chromosomes of M. graminicola lack homologs and do not pair during meiosis. Because these chromosomes are not present universally in the genome of the organism they can be considered to be dispensable. To analyze the meiotic transmission of unequal chromosome numbers, two segregating populations were generated by crossing genetically unrelated parent isolates originating from Algeria and The Netherlands that had pathogenicity towards durum or bread wheat, respectively. Detailed genetic analyses of these progenies using high-density mapping (1793 DArT, 258 AFLP and 25 SSR markers) and graphical genotyping revealed that M. graminicola has up to eight dispensable chromosomes, the highest number reported in filamentous fungi. These chromosomes vary from 0.39 to 0.77 Mb in size, and represent up to 38% of the chromosomal complement. Chromosome numbers among progeny isolates varied widely, with some progeny missing up to three chromosomes, while other strains were disomic for one or more chromosomes. Between 15–20% of the progeny isolates lacked one or more chromosomes that were present in both parents. The two high-density maps showed no recombination of dispensable chromosomes and hence, their meiotic processing may require distributive disjunction, a phenomenon that is rarely observed in fungi. The maps also enabled the identification of individual twin isolates from a single ascus that shared the same missing or doubled chromosomes indicating that the chromosomal polymorphisms were mitotically stable and originated from nondisjunction during the second division and, less frequently, during the first division of fungal meiosis. High genome plasticity could be among the strategies enabling this versatile pathogen to quickly overcome adverse biotic and abiotic conditions in wheat fields.


PLOS ONE | 2011

Novel SSR Markers from BAC-End Sequences, DArT Arrays and a Comprehensive Genetic Map with 1,291 Marker Loci for Chickpea (Cicer arietinum L.)

Mahendar Thudi; Abhishek Bohra; Spurthi N. Nayak; Nicy Varghese; Trushar Shah; R. Varma Penmetsa; Nepolean Thirunavukkarasu; Srivani Gudipati; Pooran M. Gaur; Pawan L. Kulwal; Hari D. Upadhyaya; Polavarapu B. KaviKishor; Peter Winter; Günter Kahl; Christopher D. Town; Andrzej Kilian; Douglas R. Cook; Rajeev K. Varshney

Chickpea (Cicer arietinum L.) is the third most important cool season food legume, cultivated in arid and semi-arid regions of the world. The goal of this study was to develop novel molecular markers such as microsatellite or simple sequence repeat (SSR) markers from bacterial artificial chromosome (BAC)-end sequences (BESs) and diversity arrays technology (DArT) markers, and to construct a high-density genetic map based on recombinant inbred line (RIL) population ICC 4958 (C. arietinum)×PI 489777 (C. reticulatum). A BAC-library comprising 55,680 clones was constructed and 46,270 BESs were generated. Mining of these BESs provided 6,845 SSRs, and primer pairs were designed for 1,344 SSRs. In parallel, DArT arrays with ca. 15,000 clones were developed, and 5,397 clones were found polymorphic among 94 genotypes tested. Screening of newly developed BES-SSR markers and DArT arrays on the parental genotypes of the RIL mapping population showed polymorphism with 253 BES-SSR markers and 675 DArT markers. Segregation data obtained for these polymorphic markers and 494 markers data compiled from published reports or collaborators were used for constructing the genetic map. As a result, a comprehensive genetic map comprising 1,291 markers on eight linkage groups (LGs) spanning a total of 845.56 cM distance was developed (http://cmap.icrisat.ac.in/cmap/sm/cp/thudi/). The number of markers per linkage group ranged from 68 (LG 8) to 218 (LG 3) with an average inter-marker distance of 0.65 cM. While the developed resource of molecular markers will be useful for genetic diversity, genetic mapping and molecular breeding applications, the comprehensive genetic map with integrated BES-SSR markers will facilitate its anchoring to the physical map (under construction) to accelerate map-based cloning of genes in chickpea and comparative genome evolution studies in legumes.

Collaboration


Dive into the Andrzej Kilian's collaboration.

Top Co-Authors

Avatar

Peter Wenzl

International Maize and Wheat Improvement Center

View shared research outputs
Top Co-Authors

Avatar

Eric Huttner

Australian Centre for International Agricultural Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harsh Raman

Charles Sturt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaroslav Doležel

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Rosy Raman

Charles Sturt University

View shared research outputs
Top Co-Authors

Avatar

Jacqueline Batley

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge