Andrzej Kita
University of Silesia in Katowice
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrzej Kita.
Plant Growth Regulation | 2002
Eugeniusz Małkowski; Andrzej Kita; Witold Galas; Waldemar Karcz; J. Michael Kuperberg
It was observed that dry weight yield is not a sensitive parameter withwhich to assess lead toxicity to plants. Elongation growth of corn seedlingroots was more sensitive to lead than shoot growth and was inhibited by allconcentrations tested (10−5, 10−4, and 10−3 M).It was positively correlated with potassium concentration and negativelycorrelated with lead concentration in the roots. Negative correlation also wasobserved between lead concentration and potassium concentration in roots. It ispostulated that inhibition of corn root growth is connected with potassiumleakage from root cells. The toxic action of lead on corn seedling mesocotylandcoleoptile growth was not correlated with potassium concentration in planttissue and correlation between growth and lead concentration was low. Inseedlings treated with 10−4 and 10−3 M lead the growthof mesocotyl and coleoptile was affected similarly, although the concentrationof lead was threefold higher in mesocotyl tissue than in coleoptile tissue. It isproposed that depression of corn seedlings shoot growth is not an effect ofpotassium leakage or lead accumulation but of an unknown signal induced inroots, as a response to exposure to lead, which is transmitted to shoots. Thepositive correlation between lead and calcium concentrations found in seedlingroots might be connected with high constitutional tolerance of corn to lead.Since the first 8 mm of an apical root accounts for 50% of thelead accumulated by the whole root, it is postulated that rhizofiltration oflead contaminated waters should be more efficient when plant species withhighly branched root systems are used.
Journal of Analytical Atomic Spectrometry | 2011
Beata Zawisza; Katarzyna Pytlakowska; Barbara Feist; Marzena Polowniak; Andrzej Kita; Rafal Sitko
An overview of publications focussed on the period since 2000 and outlining modern methods of sample preparation as well as advanced techniques for determination of rare earth elements (REE) in various matrices is presented in this paper. The review discusses the problems of REE determination in diverse samples i.e. from biological through environmental and geological to advanced materials. The preferable procedure of sample digestion and the most frequently applied methods of sample preparation for determination of trace elements are discussed in this paper. The case of direct analysis of samples for REE determination is also discussed. The review outlines determination of REE employing many techniques such as, inter alia, flame or graphite furnace atomic absorption spectrometry, atomic absorption with chemical vapor generation, X-ray fluorescence spectrometry, inductively coupled plasma optical emission spectrometry, inductively coupled plasma mass spectrometry and neutron activation analysis. This article summarizes and classifies materials in which rare earth elements are present, main places of their occurrence and the methods of their analysis.
Food Chemistry | 2012
Katarzyna Pytlakowska; Andrzej Kita; Piotr Janoska; Marzena Polowniak; V. Kozik
Twelve mineral and trace elements (Al, B, Ba, Fe, Zn, Mn, Mg, K, Na, P, Cu, Sr, and Ca) were determined in the herbs and their infusions consumed for medical purposes in Poland such as chamomile (Matricaria chamomilla L.), peppermint (Mentha xpiperita), melissa (Melissa officinalis), sage (Salvia officinalis), nettle (Urtica dioica), linden (Tilia vulgaris) and St. Johns wort (Hypericum calycinum). Dry digestion procedure for total concentration and wet digestion procedure for infusions were applied under optimized conditions for dissolution of medicinal herbs. Element concentrations in herbs and their infusions were determined by ICP-OES. The accuracy and precision were verified against NCS DC 73349 - bush branches and leaves certified reference material. The result of total concentrations of elements in herb leaves shows that all herbs contain most of the elements, except K and P, in the μg/g range, and that elemental concentrations varied widely. Moreover, on the basis of experimental results for the extraction efficiencies, the elements in herb infusions were classified into three specific groups: highly-extractable (>55%) including K; moderately-extractable (20-55%) including Mg, Na, P, B, Zn and Cu and poorly-extractable (<20%) including Al, Fe, Mn, Ba, Ca and Sr. The results of analysis were evaluated statistically using ANOVA one-way and three-way analysis of variance, variance correlation test and Spearmans test.
Ecotoxicology | 2013
Aleksandra Nadgórska-Socha; Bartłomiej Ptasiński; Andrzej Kita
The purpose of this study was to determine the concentrations of heavy metals (cadmium, lead, zinc, copper, iron and manganese) in soil, their bioavailability and bioaccumulation in plants leaves. This study also examined their influences on the antioxidant response of the plants Cardaminopsis arenosa and Plantago lanceolata grown in metal-contaminated and non-contaminated soils. The activities of guaiacol peroxidase and superoxide dismutase and the levels of antioxidants such as glutathione, proline and non-protein thiols were measured. Concentrations of the examined metals were several to thousands of times lower in the potentially bioavailable fraction than in the acid-extracted fraction of the soil. Similar mode of antioxidant responses in plant leaves of metalliferous populations indicates the tolerance of plants towards heavy metals. However POD and GSHt had a particularly strong role in defense reactions, as their increase was the most common reaction to heavy metal contamination.The levels of Zn, Cd and Pb in the leaves of C. arenosa better reflected metal concentrations in the metalliferous and non-metalliferous soil than the determined metal concentrations in P. lanceolata. Bioaccumulated Zn, Cd and Pb concentrations were above or in the ranges mentioned as toxic for plant tissues and therefore the studied plants have potential for use in phytostabilization.
Communications in Soil Science and Plant Analysis | 2008
Krystyna Pazurkiewicz‐Kocot; Andrzej Kita; Mariusz Pietruszka
In this work, the relationship among accumulation of selenium, auxin, and some nutrient elements [magnesium (Mg2+), iron (Fe3+), manganese (Mn2+), copper (Cu2+), zinc (Zn2+)] in tissues of roots, mesocotyls, and leaves of Zea mays L. plants was studied. Seeds of maize were cultivated for 4 days in the darkness at 27 °C on moist filter paper, then the individual seedlings were transferred into an aerated solution containing the macro‐ and microelements and were cultivated in a greenhouse for 12 h in the light and 12 h (12‐h photoperiod) in the dark at 25 °C. The seedlings were exposed to the solution containing sodium hydrogen selenite (NaHSeO3), indole‐3 acetic acid (IAA), or IAA+NaHSeO3 for approximately 96 h before chemical analysis. The concentration of IAA in the external medium was 10−4 mol dm−3, concentration of selenite (NaHSeO3) was 10−6 mol dm−3, and the pH of the medium was 6.5. The accumulation of the probed elements in seedlings of maize was measured by inductively coupled plasma optical emission spectroscopy (ICP‐OES). It was determined that the selenite and IAA, present in the external medium of growing plants, changed the uptake and accumulation of some cations in tissues of leaves, mesocotyls, and roots. The change of transport conditions of these nutrient elements is probably one of the first observed symptoms of selenium effects on plants.
Talanta | 2007
I. Stanimirova; Marzena Polowniak; Robert Skorek; Andrzej Kita; E. John; Franciszek Buhl; B. Walczak
The aim of this work was to show usefulness of chemometric analysis in processing of the data describing production of drinking water in the Silesian region of Poland. Water samples have been collected within the period of 1 year and the quality of water was characterized by a number of physical, chemical and microbiological parameters. Principal component analysis (PCA) and STATIS (Structuration des Tableaux A Trois Indices de la Statistique) were employed to obtain the knowledge about the complete water treatment process. PCA makes it possible to uncover seasonal changes influencing the water treatment process. In particular, it was found out that the salt content, hardness and conductivity of water tend to obtain higher levels in winter rather than in summer, and the relatively lower acidity is also to be expected in winter. The sensory quality of water is considerably improved over the consecutive purification steps. Complementary information about the individual technological units of the process is gained with the STATIS approach. The obtained results show that the water produced by the two independent filtering branches of the water plant is of similar quality and the prescribed quality characteristics of drinking water are fulfilled.
Central European Journal of Chemistry | 2013
Marzena Dabioch; Robert Skorek; Andrzej Kita; Piotr Janoska; Katarzyna Pytlakowska; Piotr Zerzucha; Rafal Sitko
AbstractElements that enter the aquatic environment may pose a health risk to wildlife and humans. The aims of this study were: to determine how the introduction of activated carbon for a water purification system will improve the quality of the water produced; and to investigate the sorption of metals on activated carbons, including determination of the accumulation, as well as changes in concentrations of elements in carbons. The tests were carried out on three types of activated carbons with different granular structure. All samples were collected from Water Treatment Plant Goczalkowice, Poland. Concentrations of elements were measured using an optical emission spectrometer with inductively coupled plasma. The experiment showed that metals accumulating in the activated carbons during the operation included: Ca, Mn, Zn, and Cu. In each of the three types of carbons, it can distinguish such elements as Ba, Al, Cr, Ni, Ti, which are characterized by irregular accumulation during the operation of the filter. The introduction of carbon sorbent for water treatment largely contributed to improvement in the quality of raw material supplied to customers, mainly with regard to taste and smell, as well as to reduction of basic parameters: color, absorbance in the UV range and oxidability.
Comptes Rendus Biologies | 2012
Renata Kurtyka; Eugeniusz Małkowski; Zbigniew Burdach; Andrzej Kita; Waldemar Karcz
The effect of Cd and Pb on endogenous and IAA-induced elongation growth and medium pH of maize coleoptile segments incubated at 20, 25 and 30 °C was studied. It was found that the elongation of coleoptile segments and proton extrusion increased with the temperature and reached its maximum at 30 °C. For Cd, the maximal inhibition of endogenous and IAA-induced growth as well as medium acidification of coleoptile segments was observed at 25 °C. Meanwhile, Pb, irrespective of the temperature, diminished the growth of the segments by ca. 20%, increasing the acidification of the incubation medium. It was also found that in contrast to Cd, Pb accumulation in maize coleoptile segments did not correlate with temperature. The results suggest that the toxic effect of Cd on elongation growth of coleoptile segments is connected with the decrease of the PM H(+)-ATPase activity and probably with Cd-induced high acivity of IAA oxidase, whereas the effect of Pb did not depend on activity of any of the enzymes.
Central European Journal of Chemistry | 2012
Robert Skorek; Magdalena Jablonska; Marzena Polowniak; Andrzej Kita; Piotr Janoska; Franciszek Buhl
In this study, more than 200 samples of drinking water from taps in the Silesian District (southern Poland) were analyzed. Concentrations of As, Bi, Cd, Co, Cr, Mo, Ni, Pb, Rb, Sb, Se, Te, Tl and V were measured using inductively coupled plasma-mass spectrometry technique (ICP-MS). The levels of the tested elements generally met European Union regulations. All analytical results were processed using computational methods, including the Pearson and Gini coefficients with the Lorenz curves, one-way ANOVA, the Kruskal-Wallis one-way analysis of variance, the Mann-Whitney U test, the variance correlation test and the Spearman’s test. In addition, Principal Component Analysis (PCA) with Varimax and Cluster Analysis with Ward’s Method were applied. It was shown, that some parameters (e.g. hardness and alkalinity) were highly correlated. The score plot described the degree of mineralization of water samples, so the origin of water could be easily determined. In turn, based on the created dendrogram, the division of samples into several groups (with soft, medium and highly mineralized water) could be deduced.
Archive | 2011
Marta Pogrzeba; Jacek Krzyżak; Aleksandra Sas-Nowosielska; Włodzimierz Majtkowski; Eugeniusz Małkowski; Andrzej Kita
Several assessments of the potential biomass supply in Europe show that the best means of biomass production are growing energy crops on agricultural land. Cultivation of energy crops on agricultural areas might lead to accumulation of heavy metals in plant tissues and reemission of contaminants into the atmosphere during combustion. The goal of the present study was to assess how soil contamination influences heavy metals accumulation in energy plant tissues. The current paper presents the results of screening of selected plants (Spartina pectinata, Miscanthus sp., Helianthus tuberosus, Elymus elongatus) conducted in uncontaminated region of Poland (North-Eastern part of the country) aimed at finding natural abilities to uptake small amounts of heavy metals and accumulate is in the plant tissue. Based on this screening, Miscanthus sp. was tested on heavy metal contaminated arable soil in Southern Poland. This species accumulates high amounts of metals what may cause high emission of contaminants during biomass combustion.