Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrzej M. Brzozowski is active.

Publication


Featured researches published by Andrzej M. Brzozowski.


Nature | 1997

Molecular basis of agonism and antagonism in the oestrogen receptor.

Andrzej M. Brzozowski; A.C.W. Pike; Zbigniew Dauter; Roderick E. Hubbard; Tomas Bonn; Owe Engström; Lars Öhman; Geoffrey L. Greene; Jan Åke Gustafsson; Mats Carlquist

Oestrogens are involved in the growth, development and homeostasis of a number of tissues. The physiological effects of these steroids are mediated by a ligand-inducible nuclear transcription factor, the oestrogen receptor (ER). Hormone binding to the ligand-binding domain (LBD) of the ER initiates a series of molecular events culminating in the activation or repression of target genes. Transcriptional regulation arises from the direct interaction of the ER with components of the cellular transcription machinery,. Here we report the crystal structures of the LBD of ER in complex with the endogenous oestrogen, 17β-oestradiol, and the selective antagonist raloxifene, at resolutions of 3.1 and 2.6 Å, respectively. The structures provide a molecular basis for the distinctive pharmacophore of the ER and its catholic binding properties. Agonist and antagonist bind at the same site within the core of the LBD but demonstrate different binding modes. In addition, each class of ligand induces a distinct conformation in the transactivation domain of the LBD, providing structural evidence of the mechanism of antagonism.


The EMBO Journal | 1999

Structure of the Ligand-Binding Domain of Oestrogen Receptor Beta in the Presence of a Partial Agonist and a Full Antagonist

A.C.W. Pike; Andrzej M. Brzozowski; Roderick E. Hubbard; Tomas Bonn; Ann-Gerd Thorsell; Owe Engström; Jan Ljunggren; Jan Åke Gustafsson; Mats Carlquist

Oestrogens exert their physiological effects through two receptor subtypes. Here we report the three‐dimensional structure of the oestrogen receptor beta isoform (ERβ) ligand‐binding domain (LBD) in the presence of the phyto‐oestrogen genistein and the antagonist raloxifene. The overall structure of ERβ‐LBD is very similar to that previously reported for ERα. Each ligand interacts with a unique set of residues within the hormone‐binding cavity and induces a distinct orientation in the AF‐2 helix (H12). The bulky side chain of raloxifene protrudes from the cavity and physically prevents the alignment of H12 over the bound ligand. In contrast, genistein is completely buried within the hydrophobic core of the protein and binds in a manner similar to that observed for ERs endogenous hormone, 17β‐oestradiol. However, in the ERβ–genistein complex, H12 does not adopt the distinctive ’agonist‘ position but, instead, lies in a similar orientation to that induced by ER antagonists. Such a sub‐optimal alignment of the transactivation helix is consistent with genisteins partial agonist character in ERβ and demonstrates how ERs transcriptional response to certain bound ligands is attenuated.


Nature | 2013

How insulin engages its primary binding site on the insulin receptor.

John G. Menting; Jonathan Whittaker; Mai B. Margetts; Linda Whittaker; Geoffrey Kong; Brian J. Smith; Christopher J. Watson; Lenka Zakova; Emília Kletvíková; Jiří Jiráček; Shu Jin Chan; Donald F. Steiner; Guy Dodson; Andrzej M. Brzozowski; Michael A. Weiss; Colin W. Ward; Michael C. Lawrence

Insulin receptor signalling has a central role in mammalian biology, regulating cellular metabolism, growth, division, differentiation and survival. Insulin resistance contributes to the pathogenesis of type 2 diabetes mellitus and the onset of Alzheimer’s disease; aberrant signalling occurs in diverse cancers, exacerbated by cross-talk with the homologous type 1 insulin-like growth factor receptor (IGF1R). Despite more than three decades of investigation, the three-dimensional structure of the insulin–insulin receptor complex has proved elusive, confounded by the complexity of producing the receptor protein. Here we present the first view, to our knowledge, of the interaction of insulin with its primary binding site on the insulin receptor, on the basis of four crystal structures of insulin bound to truncated insulin receptor constructs. The direct interaction of insulin with the first leucine-rich-repeat domain (L1) of insulin receptor is seen to be sparse, the hormone instead engaging the insulin receptor carboxy-terminal α-chain (αCT) segment, which is itself remodelled on the face of L1 upon insulin binding. Contact between insulin and L1 is restricted to insulin B-chain residues. The αCT segment displaces the B-chain C-terminal β-strand away from the hormone core, revealing the mechanism of a long-proposed conformational switch in insulin upon receptor engagement. This mode of hormone–receptor recognition is novel within the broader family of receptor tyrosine kinases. We support these findings by photo-crosslinking data that place the suggested interactions into the context of the holoreceptor and by isothermal titration calorimetry data that dissect the hormone–insulin receptor interface. Together, our findings provide an explanation for a wealth of biochemical data from the insulin receptor and IGF1R systems relevant to the design of therapeutic insulin analogues.


The Journal of Steroid Biochemistry and Molecular Biology | 2000

A structural biologist's view of the oestrogen receptor.

A.C.W. Pike; Andrzej M. Brzozowski; Roderick E. Hubbard

Here we review the results that have emerged from our structural studies on the oestrogen receptor ligand-binding domain (ER-LBD). The effects of agonists and antagonists on the structure of ERalpha- and ERbeta-LBDs are examined. In addition, the findings from structural studies of ER-LBD in complex with peptide fragments corresponding to the NR-box II and III modules of the p160 coactivator TIF2 are discussed in the context of the assembly of ER:coactivator complexes. Together these studies have broadened our understanding of ER function by providing a unique insight into ERs ligand specificity, its ability to interact with coactivators and the structural changes that underlie receptor agonism and antagonism.


Structure | 2002

The crystal structure of the AAA domain of the ATP-dependent protease FtsH of Escherichia coli at 1.5 Å resolution

Szymon Krzywda; Andrzej M. Brzozowski; Chandra Verma; Kiyonobu Karata; Teru Ogura; Anthony J. Wilkinson

Eubacteria and eukaryotic cellular organelles have membrane-bound ATP-dependent proteases, which degrade misassembled membrane protein complexes and play a vital role in membrane quality control. The bacterial protease FtsH also degrades an interesting subset of cytoplasmic regulatory proteins, including sigma(32), LpxC, and lambda CII. The crystal structure of the ATPase module of FtsH has been solved, revealing an alpha/beta nucleotide binding domain connected to a four-helix bundle, similar to the AAA modules of proteins involved in DNA replication and membrane fusion. A sulfate anion in the ATP binding pocket mimics the beta-phosphate group of an adenine nucleotide. A hexamer form of FtsH has been modeled, providing insights into possible modes of nucleotide binding and intersubunit catalysis.


Journal of Molecular Biology | 2010

N-myristoyltransferase from Leishmania donovani: structural and functional characterisation of a potential drug target for visceral leishmaniasis.

James A. Brannigan; Barbara A. Smith; Zhiyong Yu; Andrzej M. Brzozowski; Michael R. Hodgkinson; Asher Maroof; Helen P. Price; Franziska Meier; Robin J. Leatherbarrow; Edward W. Tate; Deborah F. Smith; Anthony J. Wilkinson

N-Myristoyltransferase (NMT) catalyses the attachment of the 14-carbon saturated fatty acid, myristate, to the amino-terminal glycine residue of a subset of eukaryotic proteins that function in multiple cellular processes, including vesicular protein trafficking and signal transduction. In these pathways, N-myristoylation facilitates association of substrate proteins with membranes or the hydrophobic domains of other partner peptides. NMT function is essential for viability in all cell types tested to date, demonstrating that this enzyme has potential as a target for drug development. Here, we provide genetic evidence that NMT is likely to be essential for viability in insect stages of the pathogenic protozoan parasite, Leishmania donovani, causative agent of the tropical infectious disease, visceral leishmaniasis. The open reading frame of L. donovaniNMT has been amplified and used to overproduce active recombinant enzyme in Escherichia coli, as demonstrated by gel mobility shift assays of ligand binding and peptide-myristoylation activity in scintillation proximity assays. The purified protein has been crystallized in complex with the non-hydrolysable substrate analogue S-(2-oxo)pentadecyl-CoA, and its structure was solved by molecular replacement at 1.4 Å resolution. The structure has as its defining feature a 14-stranded twisted β-sheet on which helices are packed so as to form an extended and curved substrate-binding groove running across two protein lobes. The fatty acyl-CoA is largely buried in the N-terminal lobe, its binding leading to the loosening of a flap, which in unliganded NMT structures, occludes the protein substrate binding site in the carboxy-terminal lobe. These studies validate L. donovani NMT as a potential target for development of new therapeutic agents against visceral leishmaniasis.


Journal of Biological Chemistry | 2012

Insulin and Insulin-like Growth Factor II Differentially Regulate Endocytic Sorting and Stability of Insulin Receptor Isoform A

Alaide Morcavallo; Marco Genua; Angela Palummo; Emília Kletvíková; Jiri Jiracek; Andrzej M. Brzozowski; Renato V. Iozzo; Antonino Belfiore; Andrea Morrione

Background: Insulin-like growth factor (IGF) II interacts with IR-A and is a more powerful mitogen than insulin. Results: IGF-II and insulin differ in regulating insulin receptor (IR)-A trafficking and stability. Conclusion: Compared with insulin, IGF-II induces lower IR-A and downstream effectors activation but protects IR-A and IRS-1 from down-regulation, thereby evoking a sustained mitogenic stimulus. Significance: These results further elucidate the mechanisms controlling IR-A biological responses. The insulin receptor isoform A (IR-A) binds both insulin and insulin-like growth factor (IGF)-II, although the affinity for IGF-II is 3–10-fold lower than insulin depending on a cell and tissue context. Notably, in mouse embryonic fibroblasts lacking the IGF-IR and expressing solely the IR-A (R−/IR-A), IGF-II is a more potent mitogen than insulin. As receptor endocytosis and degradation provide spatial and temporal regulation of signaling events, we hypothesized that insulin and IGF-II could affect IR-A biological responses by differentially regulating IR-A trafficking. Using R−/IR-A cells, we discovered that insulin evoked significant IR-A internalization, a process modestly affected by IGF-II. However, the differential internalization was not due to IR-A ubiquitination. Notably, prolonged stimulation of R−/IR-A cells with insulin, but not with IGF-II, targeted the receptor to a degradative pathway. Similarly, the docking protein insulin receptor substrate 1 (IRS-1) was down-regulated after prolonged insulin but not IGF-II exposure. Similar results were also obtained in experiments using [NMeTyrB26]-insulin, an insulin analog with IR-A binding affinity similar to IGF-II. Finally, we discovered that IR-A was internalized through clathrin-dependent and -independent pathways, which differentially regulated the activation of downstream effectors. Collectively, our results suggest that a lower affinity of IGF-II for the IR-A promotes lower IR-A phosphorylation and activation of early downstream effectors vis à vis insulin but may protect IR-A and IRS-1 from down-regulation thereby evoking sustained and robust mitogenic stimuli.


Molecular Microbiology | 2006

Structural and biochemical characterization of a mitochondrial peroxiredoxin from Plasmodium falciparum

Ian W. Boucher; Paul J. McMillan; Mads Gabrielsen; Susan E. Akerman; James A. Brannigan; Claudia Schnick; Andrzej M. Brzozowski; Anthony J. Wilkinson; Sylke Müller

Plasmodium falciparum possesses a single mitochondrion with a functional electron transport chain. During respiration, reactive oxygen species are generated that need to be removed to protect the organelle from oxidative damage. In the absence of catalase and glutathione peroxidase, the parasites rely primarily on peroxiredoxin‐linked systems for protection. We have analysed the biochemical and structural features of the mitochondrial peroxiredoxin and thioredoxin of P. falciparum. The mitochondrial localization of both proteins was confirmed by expressing green fluorescent protein fusions in parasite erythrocytic stages. Recombinant protein was kinetically characterized using the cytosolic and the mitochondrial thioredoxin (PfTrx1 and PfTrx2 respectively). The peroxiredoxin clearly preferred PfTrx2 to PfTrx1 as a reducing partner, reflected by the KM values of 11.6 μM and 130.4 μM respectively. Substitution of the two dyads asparagine‐62/tyrosine‐63 and phenylalanine‐139/alanine‐140 residues by aspartate‐phenylalaine and valine‐serine, respectively, reduced the KM for Trx1 but had no effect on the KM of Trx2 suggesting some role for these residues in the discrimination between the two substrates. Solution studies suggest that the protein exists primarily in a homodecameric form. The crystal structure of the mitochondrial peroxiredoxin reveals a fold typical of the 2‐Cys class peroxiredoxins and a dimeric form with an intermolecular disulphide bridge between Cys67 and Cys187. These results show that the mitochondrial peroxiredoxin of P. falciparum occurs in both dimeric and decameric forms when purified under non‐reducing conditions.


Journal of Medicinal Chemistry | 2012

Design and synthesis of inhibitors of Plasmodium falciparum N-myristoyltransferase, a promising target for antimalarial drug discovery.

Zhiyong Yu; James A. Brannigan; David K. Moss; Andrzej M. Brzozowski; Anthony J. Wilkinson; Anthony A. Holder; Edward W. Tate; Robin J. Leatherbarrow

Design of inhibitors for N-myristoyltransferase (NMT), an enzyme responsible for protein trafficking in Plasmodium falciparum , the most lethal species of parasites that cause malaria, is described. Chemistry-driven optimization of compound 1 from a focused NMT inhibitor library led to the identification of two early lead compounds 4 and 25, which showed good enzyme and cellular potency and excellent selectivity over human NMT. These molecules provide a valuable starting point for further development.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Implications for the Active Form of Human Insulin Based on the Structural Convergence of Highly Active Hormone Analogues.

Jiří Jiráček; Lenka Zakova; Emília Antolíková; Christopher J. Watson; Johan P. Turkenburg; Guy Dodson; Andrzej M. Brzozowski

Insulin is a key protein hormone that regulates blood glucose levels and, thus, has widespread impact on lipid and protein metabolism. Insulin action is manifested through binding of its monomeric form to the Insulin Receptor (IR). At present, however, our knowledge about the structural behavior of insulin is based upon inactive, multimeric, and storage-like states. The active monomeric structure, when in complex with the receptor, must be different as the residues crucial for the interactions are buried within the multimeric forms. Although the exact nature of the insulin’s induced-fit is unknown, there is strong evidence that the C-terminal part of the B-chain is a dynamic element in insulin activation and receptor binding. Here, we present the design and analysis of highly active (200–500%) insulin analogues that are truncated at residue 26 of the B-chain (B26). They show a structural convergence in the form of a new β-turn at B24-B26. We propose that the key element in insulin’s transition, from an inactive to an active state, may be the formation of the β-turn at B24-B26 associated with a trans to cis isomerisation at the B25-B26 peptide bond. Here, this turn is achieved with N-methylated L-amino acids adjacent to the trans to cis switch at the B25-B26 peptide bond or by the insertion of certain D-amino acids at B26. The resultant conformational changes unmask previously buried amino acids that are implicated in IR binding and provide structural details for new approaches in rational design of ligands effective in combating diabetes.

Collaboration


Dive into the Andrzej M. Brzozowski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiří Jiráček

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lenka Žáková

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge